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Abstract— Fluorescence molecular tomography (FMT) could 

exploit the distribution of fluorescent biomarkers that target 

tumors accurately and effectively, which enables noninvasive 

real-time three-dimensional (3D) visualization as well as 

quantitative analysis of small tumors in small animal studies in 

vivo. Due to the difficulties of reconstruction, continuous efforts 

are being made to find more practical and efficient approaches to 

accurately obtain the characteristics of fluorescent regions inside 

biological tissues. In this paper, we propose a region 

reconstruction method for FMT, which is defined as an L1-norm 

regularization piecewise constant level set (L1-PCLS) approach. 

The proposed approach adopts a priori information including the 

sparsity of the fluorescent sources and the fluorescent contrast 

between the target and background. When the contrast of 

different fluorescent sources is low to a certain degree, our 

approach can simultaneously solving the detection and 

characterization problems for the reconstruction of FMT. To 

evaluate the performance of the region reconstruction method, 

numerical phantom experiments and in vivo bead-implanted 

mouse experiments were performed. The results suggested that the 

proposed region reconstruction method was able to reconstruct the 

features of the fluorescent regions accurately and effectively, and 

the proposed method was able to be feasibly adopted in in vivo 

application. 

 
Index Terms—fluorescence molecular tomography, 3D 

reconstruction, piecewise constant level set 
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I. INTRODUCTION 

ith  the high sensitivity and low cost, especially with the 

rapid development of fluorescent probes and reporter 

techniques [1]-[3],  fluorescence molecular imaging (FMI) has 

played an increasingly important role in revealing the dynamic 

interactions of cellular processes [4]-[9]. FMI utilizes an 

ultrasensitive charge-coupled device (CCD) camera and high 

performance lasers to detect light emitted from living cells with 

fluorescence expression. Based on FMI, fluorescence molecular 

tomography (FMT) is an imaging modality aimed at achieving 

three-dimensional (3D) visualization of fluorescence regions in 

tissues in vivo through the solution of the reconstruction 

problem [10]-[12]. Because of its high sensitivity and low cost, 

the novel optical molecular modality and its applications have 

been widely used in small animal research and pre-clinical 

diagnostics. However there are still some challenging problems 

in FMT as following. 

One of the problems in FMT is highly ill-posed and 

ill-conditioned inverse problem, due to that multiple scatterings 

of photons propagate through heterogeneous biological tissues 

[13]-[15], and uncertainty of light propagation inside the deep 

tissue. Even though more fluorescence information can be 

captured by multiple spatial patterns of illumination, the 

problem may still be strongly ill-posed because of the sensitivity 

to noise and errors caused in the data-gathering process and raw 

data discretization [16]. Appropriate priors or penalties are 

needed to facilitate reconstruction and to restrict the search 

space to a specific solution set. According to the existing 

literatures, multi-types of a priori information have been 

adopted in reconstruction algorithms of FMT ranging from 

multi-spectral information to more involved sparse constraint 

[17]-[22]. The basic idea is to reduce the number of unknown 

variables or to increase the amount of measurements. Recently, 

the level set strategy has gained its popularity in image 

reconstruction. Classical level set methods were developed for 

modeling propagation of curves by Osher and Sethian [23] and 

have been widely used in image processing applications [24], 

[25] and a variety of inverse problems [26]-[28]. They provide a 

topologically flexible shape-based formulation, elegantly 

representing multiple objects with complicated geometries. 

Being different from the standard level set methods,  the 

piecewise constant level set (PCLS) has been discussed in the 

field of image reconstruction [29]-[32]. It requires only one 
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level set function to identify an arbitrary number of phases, 

which makes it simpler and require less storage capacity.  

The other difficulty is that the numerical computation of 

reconstruction can be time-consuming and inefficient due to the 

large scale of datasets. Various methods based on convex 

optimization have been proposed, such as the conjugated 

gradient method, Gauss-Newton method, and interior-point 

method, etc. [33]-[35]. Recently, the quadratic penalty (i.e., L2 

regularization) is widely used, since it is simple and can be 

efficiently solved by a large range of standard minimization 

algorithms, such as Tikhonov method. However, the fast spatial 

changes in the solution are often smoothed, and the localized 

features can be lost during the reconstruction process [36], [37]. 

Unlike L2 regularization, L1 regularization can effectively 

suppress spurious background signals and enforce sparsity, 

which can preserve more details. 

Consistent efforts are still being made to develop more 

advanced reconstruction methods for FMT. In this study, we 

proposed a novel region reconstruction method called the L1 

regularization piecewise constant level set (L1-PCLS) approach, 

which are aimed at increasing the accuracy and efficiency of the 

reconstruction. In addition to describing the characteristics of 

the fluorescent regions, we consider a priori information 

encompasses the sparsity and contrast of the fluorescent sources. 

Here we exploit the fact that while certain fluorescent probes 

target specific biological tissues such as tumors, the fluorescent 

intensities of target tissues and nominal background have 

obvious contrast [38]-[40]. Between different targets, we 

assume that the fluorescent intensities have a similarity to a 

certain degree, which is feasible when the targets are conducted 

with the same cells and the concentration of the probe is uniform. 

To accurately and effectively solve the L1-PCLS model, the 

alternating direction method and Conjugate Gradient (CG) [24] 

were employed. Some acceleration techniques designed for 

iteration of L1-PCLS were utilized to increase the efficiency of 

the algorithms.  

The remainder of this paper is organized as follows. In 

Section II, we provide the forward diffusion approximation 

model and the L1-PCLS model of FMT is introduced briefly. In 

Section III, numerical heterogeneous phantom experiments are 

performed to validate the performance of the proposed method. 

Then, an in vivo bead-implanted mouse experiment is used to 

demonstrate the feasibility of L1-PCLS in in vivo application. 

The results are discussed and this paper is concluded in Section 

IV. 

II.  METHODS 

A. Photon Propagation Model 

For steady-state FMT with point excitation source, the 

photon propagation model in highly scattering media such as 

biological tissues is based on the Diffusion Equation (DE) [41]. 

The following coupled DEs with a Robin-type boundary 

condition can be utilized to depict the forward problem [42], 

[43]: 
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where r denotes the position of the point inside the image 

domain Ω. The subscripts x and m denote the excitation and 

emission light, respectively. Φx,m(r) is the photon flux density. 

μax,am is the absorption coefficient, and μsx,sm is the scattering 

coefficient. Dx,m=1/3(μax,am+(1-g)μsx,sm) is the diffusion 

coefficient, and g is the anisotropy parameter. ημaf(r) denotes 

the fluorescent field which is to be reconstructed, and v denotes 

the optical reflective index mismatch at the boundary. In this 

model, the excitation source is implemented as the isotropic 

point source, which is located one mean free path of photon 

transport beneath the surface (Fig. 1(a)). Θ denotes the 

amplitude of the excitation source. 

By utilizing the finite element formulation to discretize the 

photon propagation model, we established the linear 

relationship between the measurements of the photon 

distribution on the surface and the unknown internal photon 

distribution by replacing the variables with the linear matrix 

equation 

 

   AX                                        (2) 

 

where Φ denotes the measurements of FMT, A denotes the 

system weight matrix and X denotes the intensity of the 

fluorescence distribution in biological tissues. Detailed 

descriptions can be found elsewhere [14], [15]. Therefore, 

solving the FMT inverse problem is aimed at recovering the 

fluorescent distribution X in the above linear matrix equation. 

B. Region Reconstruction method for FMT 

The inverse problem of FMT is aimed at reconstructing the 

fluorescent targets according to Eq. 2, which can be directly 

solved by inverting the weight matrix A. However, this 

inversion is often ill-posed due to the fact that the dimension of 

Φ is usually much less than the dimension of X, which makes A 

not a square matrix, and the dimension of the null space of A is 

not zero. Hence, Eq. (2) needs to be regularized in order to 

achieve a robust solution. To guarantee the uniqueness and 

stability of FMT and to preserve the details of fluorescent 

regions, the L1-norm regularization is adopted in this paper. 

The optimization function with respect to Eq. (2) is formulated 

as follows: 
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where λ is the regularization parameter used to balance the data 

fitting and L1 penalty.  
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To reconstruct the fluorescent regions inside the biological 

tissues, the image is assumed to be formed by piecewise 

constant objects of interest on an unknown background. The 

feasibility analysis is performed beforehand. For a domain 

1  , which represents the support of the objects of interest 

(fluorescent region), and 2 1\D   represents the 

homogeneous background, as shown in Fig. 1(b), the 

corresponding PCLS function describing the characteristic of 

the shape for each set is defined as: 
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Then the fluorescence distribution X can be written as 
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where C=[c1,c2]T, Ψ=[H(ϕ), 1-H(ϕ)]. In this formulation, the 

unknown values are assumed as the constant concentration 

values of the anomaly (object of interest) and background, 1c  

and 2c  respectively [34], [35]. The characteristic function H(ϕ) 

is defined as a smooth approximation of the step function and 

the Dirac delta function: 
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To avoid the bound overflow in region reconstruction, an 

additional constraint function K(ϕ) is defined as: 
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In summary, the optimization problem of the region 

reconstruction for FMT is: 
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Eq. (8) for the FMT system is clearly convex. To solve Eq. 

(8), the augmented Lagrangian-based method is employed, 

which is a combination of the multiplier method and the 

penalization method:  
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where η is a parameter vector called the Lagrange multiplier, μ 

is a positive real number called a penalization parameter, and 

the last term of Eq. (9) is a penalization term. Note that when 

K(ϕ) = 0, then the Lagrangian term vanishes, and L=E. Thus, the 

optimization point of Eq. (9) is equal to the solution of Eq. (8). 

At the optimization point of L, we must have 
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Fig. 2.    Flow chart of the region reconstruction method. 

  

 
Fig.1.   (a) Setup of excitation light source and CCD detector for 

reconstruction. The field-of-view (FOV) is 160° for CCD detection.  (b) 

Definition of domains used for PCLS in cross-sectional view. 
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Since solving Eq. (10) for ϕ, C and η simultaneously is 

difficult and time-consuming, we follow the idea in the classic 

alternating direction method for solving these parameters. The 

flowchart of the proposed method is illustrated in Fig. 2. 

Firstly, consider the optimization of the level set function  , 

which is realized via a gradient-based method [36], and an 

artificial time variable t  is introduced: 
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where 0,1,2, ,k N is the iteration number, and N is the 

maximum iteration number. To make the iteration continuous, ϕ 

is replaced by a smoothed approximation   with an amplitude 

parameter ε, which is a positive number much smaller than 1: 
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Secondly, to consider the optimization of C, we need to 

calculate the equation: 
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It is worth mention that 0   in iteration of ϕ. Thus, the 

coefficient matrix of Eq. (12) will be zero, which leads to the 

equation: 

 

-T k k TA A C A I                             (14) 

 

   We adopt the CG algorithm [24] to update C when solving Eq. 

(14). Due to the highly ill-poseness process in FMT, the 

updating procedure should not be implemented too early or too 

frequently during the iterations. Thus a fixed number of 

iterations γ1 and frequency γ2 are used to constrain the iterations 

of C. Practically, the value of C is constrained in a predefined 

search interval [a, b] to further stabilize the iteration of C and 

restrain the produced value within a given range. 

Last, an updating scheme for η is constructed which the form 

of the equation is same as the iteration equation of ϕ: 

 

  1 1( )k k kK                                  (15) 

 

As the iterative intermediate result is close to the true 

optimization point, the iteration slows down. In Step 1 and Step 

3, the parameters ε and μ need to perform minor adjustment to 

accelerate the iteration. One other thing to note is that neither ε 

nor μ should be too large, which will make the iteration 

unstable. 

III. RESULTS 

In this section, numerical heterogeneous phantom 

experiments and an in vivo mouse experiment were carried out 

to validate the performance of the proposed method. All 

computational processes were completed on a personal 

computer with 2.9GHz Intel Core i7 CPU and 4GB RAM. 

To quantify the reconstruction results, the position error (PE), 

contrast-to-noise ratio (CNR) and Dice coefficient (Dice) were 

utilized in this paper. PE was defined to analyze the location 

error between the barycenter of the reconstruction region and 

real fluorescent region. 

 

0 2|| ||rPE P P                                   (16) 

 

where P=[x, y, z] represents the coordinate vector of the points, 

and Pr, P0 are the barycenter of the reconstruction region and 

real fluorescent region, respectively. 

CNR was introduced to indicate whether the reconstructed 

region could be clearly distinguished from the background [44]. 
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where wVOI, wVOB are the weight factors of the volume of interest 

(VOI) and volume of background (VOB) relative to the entire 

image volume, while μVOI, μVOB are the mean values of VOI and 

VOB, and σVOI, σVOB are the respective standard deviations. In 

this paper, the VOI was defined according to a threshold of 30% 

of the maximum fluorescent intensity. 

Dice coefficient was performed to validate the similarity of 

the reconstruction region and the real fluorescent region. 
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where Sr and S0 are the point sets of the reconstruction region 

and the real fluorescent region respectively. 

A. Results of the Heterogeneous Phantom Experiments 

Heterogeneous phantom experiments were conducted to 

evaluate the performance of the L1-PCLS method. The 

heterogeneous cylindrical phantom is visualized in Fig. 3, where 

Fig. 3(a) shows the 3-D view of the phantom, and Fig. 3(b) 

shows the cross-section view of the phantom at the z=0 slice. 

The diameter and height of the phantom were both 20mm. Four 

kinds of tissues (Heart, Lungs, Bone and Muscle) were used to 

construct the phantom, and the corresponding optical properties 

were assigned according to Table I [15]. The heterogeneous 

phantom was discretized to 4564 nodes and 24333 elements for 

reconstruction. Two small spheres with a diameter of 2.0mm 

each were embedded into the lungs to represent the real 

fluorescent regions. The excitation light sources were modeled 

as isotropic point sources located in the z=0 slice with a light 

intensity of 0.02 watts, and the measurements were taken in 
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transillumination mode with a 160°field-of-view (FOV). Then, 

the photon propagation model and measurements were 

established using the finite element method. In the experiments, 

5% Gaussian noise was added to the measurements to simulate 

the situation when practical fluorescence measurements were 

taken using a CCD camera. Fluorescent images in a 360° full 

view were collected at every 10° (i.e., 36 projections were 

adopted). To simulate the practical situation where the 

intensities of the fluorescent sources are similar to a certain 

degree, the intensity ratio for the two sources was set from 1:1 to 

1:1.8 sequentially. To validate the reconstruction performance, 

two conventional methods (L1-IS and Tikhonov) were utilized 

to reconstruct the same datasets while maintaining the same 

termination condition. 

The reconstruction results of the three methods with different 

fluorescent ratios are shown in Fig. 4, and the quantitative 

analysis of the performance for the three methods is listed in 

Table II. The columns of Fig. 4 denote the reconstruction results 

corresponding to different fluorescent ratios. The first, third and 

fifth rows in Fig. 4 illustrate the 3D reconstruction results 

corresponding to Tikhonov, L1-IS and L1-PCLS respectively, 

while the second, fourth and sixth rows illustrate the 

cross-sectional views corresponding to the three methods. The 

white circles in the cross-sectional views denote the real 

positions and regions of the fluorescent sources. All the 

cross-sectional views in Fig. 4 are shown in the z=0 slice.  

To evaluate the performance of the reconstruction methods, 

the PE, CNR, Dice coefficient and computation time were used 

to illustrate the robustness, accuracy and efficiency of the 

methods.  

1) Robustness: When the intensity of S2 increased, the 

reconstruction results of the two targets became affected in both 

the Tikhonov and L1-IS according to the fact that the intensity 

of S1 was decreased in both methods. Particularly in L1-IS, the 

shape of S1 became more and more diminished. For the 

L1-PCLS, the intensities of the two targets were balanced due to 

the PCLS model, and the regions of the two targets robustly 

stayed the same when the intensity of S2 was bigger than S1. In 

fact, when the contrast of the two sources was too high (the 

fluorescent ratio is bigger than 1:2), all three methods could 

hardly obtain satisfactory reconstruction results. This is mainly 

because the reconstruction methods would automatically trade 

the weaker target as background.  

2) Accuracy: L1-PCLS achieved better performance in PEs in 

both targets. When the fluorescent ratio increased, the PE for S1 

increased, and the results were better than those obtained with 

the Tikhonov and L1-IS methods. Unlike the Tikhonov method, 

the results of the L1-regularization method acted out with a 

stronger convergence property and fewer reconstruction 

artifacts. However, for the region reconstruction, both the 

Tikhonov and L1-PCLS methods could achieve a high Dice 

coefficient. Due to the high convergence property of L1-norm 

regularization, the CNRs of the L1-PCLS and L1-IS methods 

were much higher than for the Tikhonov. Owing to the balance 

effect of the PCLS model, the CNRs of the L1-PCLS method 

were not increasing infinitely.  

TABLE I 

OPTICAL PROPERTIES OF THE NUMERICAL PHANTOM 

Material μax(m-1) μsx (m-1) μam (m-1) μsm(m-1) 

Bone 2.4 1750 3.5 6.1 

Lungs 13.3 1970 20.3 1950 

Heart 8.3 1010 10.4 990 

Muscle 5.2 1080 6.8 1030 

 

TABLE II 

QUANTITATIVE ANALYSIS OF THE THREE METHODS IN NUMERICAL PHANTOM EXPERIMENTS 

Methods 
Quantitative 

Index 

Fluorescent Ratios (S1:S2) 

1:1 1:1.2 1:1.4 1:1.6 1:1.8 

Tikhonov 

PE(mm) 
S1:0.96 

S2:1.61 

S1:0.96 

S2:1.61 

S1:0.96 

S2:1.61 

S1:0.96 

S2:0.58 

S1:0.96 

S2:0.58 

CNR 11.2 11 11.2 11.5 12.2 

Dice 42% 41.1% 43.3% 40.8% 41.2% 

Time(s) 152.7 156.5 199.4 150.9 147.8 

L1-IS 

PE(mm) 
S1:0.96 

S2:0.58 

S1:1.34 

S2:0.93 

S1:1.34 

S2:0.93 

S1:0.96 

S2:0.93 

S1:0.96 

S2:0.93 

CNR 47.5 40.1 51.4 63.0 73.4 

Dice 12.9% 9.5% 6.7% 6.7% 6.8% 

Time(s) 41.9 40.4 40.2 41.6 40.6 

L1-PCLS 

PE(mm) 
S1:0.67 

S2:0.43 

S1:0.42 

S2:0.43 

S1:0.96 

S2:0.43 

S1:0.96 

S2:0.43 

S1:0.96 

S2:0.43 

CNR 45.3 45.5 47.9 47.9 47.9 

Dice 45.1% 22.6% 25.4% 25.4% 25.4% 

Time(s) 18.6 18.8 19.4 24.1 18.2 

 

 
Fig.3.   Setups of the numerical phantom. (a) 3D visualization of the phantom. 

(b) The cross-sectional view of the phantom at the z=0 plane. S1 and S2 are 

two fluorescent sources set in the z=0 plane. The diameter of the cylindrical 

phantom is 2cm, and the diameter of the sources is 2mm. 
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3) Efficiency: For the same datasets, the Tikhonov method 

required nearly 150s to implement the reconstruction, while the 

L1-IS considerably enhanced the efficiency up to nearly 40s. 

Owing to the relatively simple model and accelerated 

techniques, the L1-PCLS took less computation time (nearly 

20s) to obtain satisfactory results compared to the other two 

methods. Consequently, the proposed method tended to be 

helpful and necessary. 

B. Results of the In vivo Mouse Experiments 

To further study the potential of the proposed method in 

practical application of FMT, an in vivo experiment on an adult 

Kunming mouse (Laboratory Animal Center, Peking University,   

China) was performed with a dual-modality FMT and micro-CT 

imaging system previously developed by our group [45]-[47]. 

The schematic illustration of the system is shown in Fig. 5, 

which is mainly equipped with a cooled CCD camera, a 

continuous wave (CW) laser, a set of optical lenses, micro-CT 

equipment and a rotating stage. The fluorescence measurements 

were collected in transillumination mode.  

The main process of in vivo experiments can be summarized 

as follows. At first, the mouse was implanted with a fluorescent 

bead in the hypogastria. The bead was filled with a cy5.5 

solution with a concentration of 2000nM, and this fluorescent 

solution had an extinction coefficient of 0.019 mm-1μM-1, with a 

quantum efficiency of 0.23 at the peak excitation wavelength of 

671nm, and the emission wavelength was 710nm [48]. The 

performance of the proposed method can be accurately 

validated in this study, since the fluorescent bead was wrapped 

in a plastic material, which could be easily detected by the 

 
 

Fig.4. Reconstructed results of heterogeneous numerical phantom experiments with different fluorescent ratios, using different methods. The columns denote the 

reconstructed results corresponding to different fluorescent ratios (S1:S2:  1:1, 1:1.2, 1:1.4, 1:1.6, 1:1.8). The first and second rows are the reconstruction results 

obtained using the Tikhonov method. The third and fourth rows correspond to the L1-IS method. The fifth and sixth rows correspond to the L1-PCLS method. -3D 

denotes the 3D views of the reconstruction results, and –CV denotes the cross-sectional views of the results. The red spheres in the 3D views and the white circles 

in the cross-sectional views show the real positions of the fluorescent sources.  
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micro-CT system to locate the real fluorescent region. The 

detector FOV was 160° and 8 projections were adopted. After 

obtaining the raw data including the fluorescence data and 

anatomical structural data, some essential preprocessing 

operations were carried out to prepare the data for FMT 

reconstruction. The original dataset acquired by micro-CT was 

converted into 3D volume data via the Feldkamp-Davis-Kress 

(FDK) algorithm [49], which is shown in Fig. 6. In order to 

build the heterogeneous mouse model, five main kinds of organs 

including muscle, lungs, heart, liver and kidneys were 

segmented through a combination method of interactive and 

region growing methods [47]. The optical properties for 

different organs were calculated according to Ref. [50], which is 

listed in Table III. Then, the fusion of the mesh and the 

fluorescence data was carried out via a 3D surface flux 

reconstruction algorithm [51]. The heterogeneous mouse model 

and the fusion are shown in Fig. 7. Finally, the heterogeneous 

mouse model was discretized into 5639 nodes and 33627 

elements for the reconstruction of FMT. 

After finishing the above procedures, the reconstruction of 

FMT was performed by using three different reconstruction 

methods (Tikhonov, IS and L1-PCLS). The 3D reconstruction 

results of the three methods are shown in Fig. 8. Fig. 8 (a), (b) 

and (c) are the reconstruction results by Tikhonov, L1-IS and 

L1-PCLS, respectively. The cross-sectional views of the results 

are given in Fig. 9, where Fig.9 (c), (d) and (g) are the 

cross-sectional views of Tikhonov, L1-IS and L1-PCLS, 

respectively. Fig.9 (a) shows the 3D rendering of the 

experimental mouse and the location of the fluorescent bead, 

while Fig. 9(b), (d) and (f) are the cross-sectional views of the 

source location plane (z=6.4mm). The red squares denote the 

real position of the fluorescent bead. Quantitative analysis for 

the performance of the three methods is shown in Table IV, 

which is also conducted by PE, CNR, Dice and computation 

time. 

Similar to the heterogeneous phantom experiments, better 

reconstruction results were achieved by the proposed L1-PCLS 

method. Owing to the number of projections for the in vivo 

study is much less than the phantom study, there were more 

reconstruction artifacts via Tikhonov and L1-IS methods, as 

shown in Figs. 8 and 9. Even in this adverse situation, the 

proposed method could still obtain satisfactory results. 

Quantitative analysis of the performance has further 

demonstrated the superiority of L1-PCLS. This means that the 

proposed method could achieve reliable fluorescent targets in 

biological application.  

IV. DISCUSSION AND CONCLUSION 

In this paper, we propose a novel region reconstruction 

method called L1-PCLS to reconstruct the internal fluorescent 

regions for FMT. It is well known that the ill-posedness of the 

TABLE III 

OPTICAL PROPERTIES OF THE IN VIVO MOUSE EXPERIMENT 

Material μax(m-1) μsx (m-1) μam (m-1) μsm(m-1) 

Liver 343.67 677 228.31 648 

Lungs 191.82 2172 126.55 2124 

Heart 57.45 962 38.29 905 

Kidneys 64.45 2248 43.03 2109 

Muscle 84.95 427.3 56.3 379.2 

 

 
Fig.7.    The heterogeneous mouse model for the in vivo experiment. (a) The 

surface of the mouse body. (b) The heterogeneous mouse torso used for 

imaging reconstructions, including heart, lungs, liver, muscle, and kidneys. 

(c) The surface view of the mouse torso with the frontal view measurements 

mapped on it. 

  

 
Fig.5.   The schematic diagram of the dual-modality FMT/micro-CT imaging 

system. 

  

 
Fig.6.    Anatomical structure of the mouse. (a) The transverse view, (b) The 

coronal view, (c) The sagittal view, (d)   3D visualization of the mouse. The 

red square marker in (a), (b) and (c), and the red dot marker in (d) illustrate the 

location of the fluorescent bead. 
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FMT inverse problem causes relatively large errors in 

reconstruction. There are various kinds of methods based on 

convex optimization and compress sensing to reconstruct the 

fluorescent distributions inside biological tissues [14]-[16]. In 

addition, compression methods have been proposed for 

reducing the computational complexity of FMT [52], [53]. To 

solve the ill-posedness problem of FMT, the sparsity and 

contrast of the fluorescent region is used as a priori knowledge, 

and accordingly L1-norm regularization and PCLS is performed 

in the proposed method. Because the L1-PCLS function for 

FMT is clearly convex, we adopt the augmented 

Lagrangian-based method, which is a conventional tool to solve 

the problem of convex optimization. As the FMT inverse 

problem is severely ill-posed and the parameters of Lagrangian 

objective function can hardly be solved simultaneously, the 

convergence speed of L1-PCLS will deteriorate. Thus, the 

alternating direction method and CG method are introduced to 

accelerate the iteration. With these approaches, the proposed 

method can reconstruct the characteristics of the fluorescent 

regions accurately and effectively. Owing to the sparsity 

constraint of L1-regularization and balance effect of PCLS, the 

reconstruction of L1-PCLS is neither over-smoothed nor 

over-shrunk. Thus, L1-PCLS is a novel reconstruction strategy 

for FMT, and it can reconstruct satisfactory fluorescent targets 

inside biological tissues. 

 To validate the performance of L1-PCLS, we performed 

numerical heterogeneous phantom experiments and in vivo 

mouse experiments. For comparison, the L1-IS and Tikhonov 

methods were adopted. The experimental results indicated that 

L1-PCLS was capable of obtaining accurate features of the 

fluorescent regions. In numerical phantom experiments with the 

dual fluorescent source case and different fluorescent ratios, 

L1-PCLS maintained reliable reconstruction results, and the 

performance of the proposed method was illustrated via PE, 

CNR, and Dice coefficient of the reconstruction results. The 

reconstruction results of the in vivo mouse experiments 

validated the feasibility of L1-PCLS in an in vivo application, 

and the features of the reconstruction regions obtained by 

L1-PCLS were better than the two conventional methods, which 

demonstrated the superiority of the proposed method in in vivo 

application. Besides, the computation time of L1-PCLS was 

substantially satisfactory in both numerical phantom 

experiments and in vivo experiments, which illustrated the 

efficiency of the proposed method.  

It should be noted that incorrect parameters used in the 

algorithms might reduce the performance of the proposed 

method. The adaptive parameter achievement algorithms should 

be studied further. Besides, other performances of the proposed 

method, such as spatial resolution and depth sensitivity, should 

be systematically tested. 
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