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Recent neuroimaging studies have shown that the cognitive and memory decline in patients with Alzheimer’s disease
(AD) is coupled with abnormal functions of focal brain regions and disrupted functional connectivity between distinct
brain regions, as well as losses in small-world attributes. However, the causal interactions among the spatially isolated,
but functionally related, resting state networks (RSNs) are still largely unexplored. In this study, we first identified
eight RSNs by independent components analysis from resting state functional MRI data of 18 patients with AD and
18 age-matched healthy subjects. We then performed a multivariate Granger causality analysis (mGCA) to evaluate
the effective connectivity among the RSNs. We found that patients with AD exhibited decreased causal interactions
among the RSNs in both intensity and quantity relative to normal controls. Results frommGCA indicated that the causal
interactions involving the default mode network and auditory network were weaker in patients with AD, whereas
stronger causal connectivity emerged in relation to the memory network and executive control network. Our findings
suggest that the default mode network plays a less important role in patients with AD. Increased causal connectivity of
the memory network and self-referential network may elucidate the dysfunctional and compensatory processes in the
brain networks of patients with AD. These preliminary findings may provide a new pathway towards the determination
of the neurophysiological mechanisms of AD. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Alzheimer’s disease (AD), accounting for 50–60% of all dementia
(1), is a progressive, neurodegenerative disorder characterized by
significant impairments in multiple cognitive domains, including
memory, attention, reasoning, language and executive functions.

The pattern of brain pathology in AD evolves as the disease
progresses, starting mainly in the hippocampus and entorhinal
cortex and subsequently spreading throughout most of the tempo-
ral lobe and the posterior cingulate, finally involving extensive brain
regions (2–4). Neuroimaging, in particular functional MRI (fMRI),
studies of the neuromechanisms of AD have shifted from those
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highlighting focal regions of abnormal brain functions [for a review,
see ref. (5)] to those focusing on the dysfunctional brain connectivity
between spatially distinct brain regions [for a review, see ref. (6)].

Resting state fMRI reflects the neuronal baseline activity of the
brain, representing the state of the human brain without goal-
directed neuronal action and external input (7), and the resting
state functional connectivity in the blood oxygenation level-
dependent signal during rest corresponds to consistent function-
ally relevant resting state networks (RSNs) (8). Resting state fMRI
has been used to evaluate brain function by measuring functional
connectivity between brain regions (9). Previous studies using
seed-based analysis have demonstrated decreased functional
connectivity in patients with AD relative to normal controls
between the precuneus/posterior cingulate cortex (PCC) and
several brain regions, including the (medial) temporal cortex,
hippocampus and prefrontal cortex (10–12). Moreover, it is partic-
ularly noteworthy that several studies (13,14) using graph theoret-
ical approaches have consistently detected AD-related topological
changes relative to normal controls in whole brain networks,
especially losses of small-world attributes, characterized by abnor-
mal clustering coefficients and characteristic path lengths, provid-
ing additional evidence for the disconnection theory of AD (6).
However, few studies have evaluated the relationship between
large brain networks in patients with AD. It is assumed that
patients with AD may not only have dysfunctional connectivity
among distinct brain regions, but that their cognitive deficits
may be related to the dysfunction of entire networks of regions
failing to properly communicate with one another.

Functional network connectivity has recently been employed to
measure the relationships among RSNs separated using indepen-
dent components analysis (ICA) (15). The data-driven method ICA
is effective for the examination of the functional connectivity of
brain activity as it can isolate the spatial patterns of functionally
related neural networks from the spatial patterns of activity related
to artifacts, such as subtle movements, machine noise, and cardiac
and respiratory pulsations (8,16,17). Each RSN detected using ICA
consists of a spatial map and an associated time course. The
temporal dependences among the time courses describe the
integrity and intervention of brain areas across large neural
networks (15). In the classic functional network connectivity
analysis, lag shift correlation has been used. However, this method
ignores the fact that the interactions among RSNs are complex,
possibly dynamic and directional. A previous study (17) has
explored the causal interactions among independent components
(ICs) using Granger causality analysis (GCA) in the spectral domain.
In this article, we propose an alternative causality analysis based on
GCA to evaluate the effective connectivity within the RSNs of
patients with AD and normal controls. However, a pair-wise
Granger causality framework cannot resolve whether the interac-
tion between two time series is direct or indirect (18). Simulations
by Kus et al. (19) have shown that pair-wise estimates may yield
incorrect results. Meanwhile, we compared pair-wise GCA with
multivariate GCA (mGCA) using simulated data, and found that
the results from pair-wise GCA may be incorrect. Hence, we
introduced mGCA (20) to detect the direct causal relations among
multiple RSNs and to discern both the direction and strength of
information flow among RSNs.

In this study, we combined ICA and mGCA to investigate the
causal interactions among RSNs in patients with AD and in normal
controls. We identified consistent RSNs from the two groups using
ICA. These RSNs have been proven to be highly reproducible and
stable across subjects and sessions (8). Then, mGCA was applied

to evaluate the effective connectivity between these RSNs. We
hypothesized that patients with AD would exhibit weaker and less
causal interactions among RSNs, andwe expected that RSNs would
play abnormal roles in patients with AD relative to those in
normal controls.

MATERIALS AND METHODS

All research procedures were approved by the Tiantan Hospital
Subcommittee on Human Studies and were conducted in
accordance with the Declaration of Helsinki.

Subjects

From Beijing Tiantan Hospital, we recruited 18 right-handed patients
with AD, according to the criteria of the National Institute of
Neurological and Communicative Disorders and Stroke–Alzheimer’s
Disease and Related Disorders Association (21). Eighteen healthy
right-handed age-matched subjects recruited from the community
served as controls. Prior to the experiment, the purpose of the study
was briefly explained to the subjects. The main characteristics of the
subjects are reported in Table 1. There was no significant difference
in terms of age and sex between the normal controls and patients
with AD. Each subject provided written informed consent approved
by the Institutional Review Board of the Tiantan Hospital Subcom-
mittee on Human Studies. In the AD group, patients with any
neurological or psychiatric illness other than AD, and those taking
medications or other substances that would influence the central
nervous system, were excluded. In the healthy control group,
subjects were excluded if they had any neurological or psychiatric
illness, or if they were taking medications or other substances that
would influence the central nervous system. For the resting state
scans, subjects were instructed simply to rest with their eyes closed,
relaxed, but not to fall asleep.

Data acquisition and preprocessing

All experiments were performed on a Siemens Trio 3-T MRI system
at Tiantan Hospital of Beijing, China. A custom-built head holder
was used to prevent head movements. The resting state scan lasted
for 8min and 20 s, and acquired 250 resting state volumes. Func-
tional MR imageswere obtained using a gradient echo T2*-weighted
pulse sequencewith the following parameters: TR=2000ms; TE=30
ms; matrix, 64� 64; field of view, 256� 256mm2; flip angle, 85� .
Then, 20 slices (6mm thickness, no gap) oriented parallel to the

Table 1. Subject characteristics

AD Controls

n 18 18
Age range (years) 43–76 49–78
Age (mean� SD) (years) 63.7� 8.6 64.9� 8.4
Sex (male/female) 9/9 10/8
MMSE score (mean� SD) 18.1� 2.8 29.5� 0.5
CDR 1 0

No significant differences (p< 0.05) were observed in age or
sex between the groups. Significant differences were noted
in MMSE scores between the groups (p< 0.0001).
AD, patients with Alzheimer’s disease; CDR, Clinical Dementia
Rating; MMSE, Mini-Mental State Examination.
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anterior commissure–posterior commissure line were collected to
cover the whole brain. After the functional run, a high-resolution
T1-weighted three-dimensional MRI sequence was used (voxel
size, 1� 1� 1mm3; no gap; TR = 2100ms; TE = 3.25ms; matrix,
256� 256; field of view, 230� 230mm2; flip angle, 10�).
All preprocessing steps were carried out using Matlab 7.6.0

(R2008a) (MathWorks Inc., Natick, MA, USA) with Statistical
Parametric Mapping 5 software (SPM5, http://www.fil.ion.ac.uk).
The first five volumes of each session were discarded to allow for
equilibrations of the magnetic field. All the remaining volumes
were firstly realigned to correct for head motions using least-
squares minimization. None of the subjects had head movements
exceeding 2mm on any axis or head rotations greater than 1º. The
image data were further processed with spatial normalization
based on the Montreal Neurological Institute space (22), and
resampled at 2mm� 2mm� 2mm. Temporal band-pass filtering
(0.01< f< 0.08Hz) was then performed to reduce the effects of
the low-frequency drifts and high-frequency noise (23) with REST
(24). Finally, the images were smoothed with a 6-mm full width
at half-maximum Gaussian kernel.

ICA

We performed a group spatial ICA operation on the preprocessed
data of patients with AD and normal controls using the fMRI
Toolbox (GIFT, http://icatb.sourceforge.net/). The images were
reduced to 40 dimensions using principal component analysis,
and the number of ICs was estimated to be 25 using the minimum
description length criteria (25). Themean ICs of all the subjects, the
corresponding mean time courses and the ICs for each subject
were obtained from group ICA separation and back reconstruction
(26). The maps of these ICs across all subjects were generated for
a random effect analysis using a one-sample t-test (p< 0.05,
correction using the false discovery rate criterion). The intensity
values in each spatial map were converted to Z scores to indicate
the voxels that contributed most strongly to a particular IC. Voxels
with absolute Z values greater than 1.5 were considered as active
voxels of the IC in this study (27). According to previous studies
(15,28), a selection of the components to be retained for further
analysis among the 25 estimated ICs was performed using
anatomic information. The classification of the ICs in terms
of RSNs was performed according to the fMRI networks
during rest consistently shown in previous ICA studies
(29,30). Our selected RSNs corresponded to the cerebral
components with the largest spatial correlations with the
network templates (31,32), which contained the main compo-
nents of the RSNs. We then calculated the average Z score of
active voxels for each selected RSN.

mGCA

mGCA has been proven to be effective for the investigation of
causal networks according to previous neuroimaging studies
(20,33,34). In the current study, we paid attention to the effective
connectivity patterns of patients with AD and normal controls
using mGCA. Let X(t) = (x1(t), x2(t), . . ., xN(t))

T be a matrix
representing data from the summary time series of the ICs. Here,
xi(t)(i = 1, . . .,N) is a time series corresponding to the ith IC and T
denotes the matrix transposition. In the following, bold letters
denote time domain matrices and capital letters in normal font
denote their frequency domain counterparts. The multivariate
autoregressive model of orderpis given by:

X tð Þ �
Xp
n¼1

A nð ÞX t � nð Þ ¼ E tð Þ [1]

where A(n) denotes the matrix of model parameters consisting
of elements aij(n) and E tð Þ is the vector corresponding to the
residual error. The order of the autoregressive model was set
to unity using the Schwarz criterion (20,27,35). Then, Equation
[1] is transformed to the frequency domain as follows:

X fð Þ ¼ A�1 fð ÞE fð Þ ¼ H fð ÞE fð Þ [2]

H fð Þ ¼ A�1 fð Þ [3]

where aij fð Þ ¼ dij �
Pp
n¼1

aij nð Þe�i2pfn and the element aijcorre-

sponds to the matrixA. Here, dij is the delta function, expressed

asdij ¼ 1; i ¼ j;
0; i 6¼ j:

�
. In addition, i= 1,. . .,N and j= 1,. . .,N. H(f) is

the frequency domain transfer matrix and hij(f) represents its
element in the ith row and jth column. hij(f) is defined as the
non-normalized directed transfer function (DTF) corresponding
to the influence of IC j on IC i (19). The direct DTF (dDTF)
was obtained by multiplying hij(f) with the partial coherence
between ICs i and j. This operation emphasized the direct
causality rather than mediated influences.

To calculate the partial coherence, the cross-spectra was
computed as:

S fð Þ ¼ H fð ÞVHH fð Þ [4]

Here, V is the variance of the matrixE(f) and superscript H
denotes transposition of the conjugate. Then, we obtained the
partial coherence between ICs i and j using:

θij fð Þ ¼ M2
ij fð Þ

Mii fð ÞMjj fð Þ [5]

where Mij(f) is the cofactor of the matrix S. The partial coherence
was confined to the range [0, 1]. A zero value indicates no direct
relation between a pair of ICs in a statistically significant manner.
A value of unity indicates that there is complete direct associa-
tion. dDTF was defined as the sum of all frequency components
of the product of the non-normalized DTF and partial coherence
as given by:

dDTFij ¼
X
f

hij fð Þθij fð Þ [6]

Eventually, we obtained the dDTF value, which only reflects
the magnitude of the causal influences between ICs. To assess
the significance of path weights, a null distribution was obtained
by generating 2500 sets of surrogate data and calculating the
dDTF from these datasets (36). The dDTF value was compared
with the null distribution for a one-tailed test of significance with
p=0.05. The effective connectivity network of the eight ICs was
constructed by scaling the significant dDTF values.

Node interaction analysis

In order to better extract information on the temporal relations
among the RSNs obtained from mGCA, a node interaction
analysis was performed. In the current study, we analyzed the
measures of ‘In degree’ and ‘Out degree’ of the two directed
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networks. A general definition of ‘In degree’ and ‘Out degree’, as
provided by previous studies (37,38), is as follows:

• ‘In degree’: number of Granger causal efferent connections to
a node (one of the RSNs) from any other node. This causal
flow profile identifies nodes that are the central targets of
the network.

• ‘Out degree’: number of Granger causal afferent connections
from a node (one of the RSNs) to any other node. This causal
flow profile identifies nodes that are the central sources of
the network.

The nodes with high degree were considered to be the hubs of
the network (39). We calculated ‘In+Out degree’ for every RSN.
Further, RSNs were identified as the hubs in the network if their
sums of ‘In degree’ and ‘Out degree’ were at least one standard
deviation (SD) greater than the average ‘In +Out degree’ for all
RSNs (i.e. sum>mean+SD). We calculated the sum of ‘In and
Out degree’ for every subject to explore the difference in the

quantity of effective connectivity between patients with AD and
normal controls. We then calculated the sum of dDTF values for
all connections for every subject to explore the difference in the
intensity of effective connectivity between patients with AD and
normal controls.

RESULTS

Component selection and analysis

We identified eight ICs for mGCA. The spatial maps of the eight RSNs
selected for effective connectivity analysis in normal controls and
patients with AD are illustrated in Fig. 1. Tables 2 and 3 summarize
the components selected in normal controls and patients with AD,
respectively, together with the regions of activation and the
Brodmann areas in which activations occurred. On the basis of our
results, and those of a large number of RSN studies, the eight ICs
associated with RSNs can be described as follows:

Figure 1. Representation of the eight resting state networks (RSNs) of resting state functional MRI (fMRI) data of patients with Alzheimer’s disease (AD)
and normal controls. (A–H) DMN, SN, DAN, ECN, VN, MeN, AN and MoN in AD patients. (A’–H’) DMN, SN, DAN, ECN, VN, MeN, AN and MoN in normal
controls. Images are Z statistics overlaid on the average high-resolution scan transformed into standard (Montreal Neurological Institute 152) space. AN,
auditory network; DAN, dorsal attention network; DMN, default mode network; ECN, executive control network; MeN, memory network; MoN, motor
network; SN, salience network; VN, visual network.
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• RSN1: the network referred to as the default mode
network (DMN) (23,40). This network has been suggested
to be involved in internal processing (40,41). It mainly
includes the PCC/precuneus region, bilateral inferior parietal

gyrus, angular gyrus, middle temporal gyrus and superior
temporal gyrus.

• RSN2: the network corresponding to the salience network
(SN) for its role in processing diverse homeostatically relevant

Table 2. Regions activated in normal controls during the resting state (one-sample t-test results)

Brain region Brodmann
area

Talairach Maximal
Z score

Volume
(voxel)

x y z

RSN1 (default mode network)
Angular gyrus 39 �49 �68 33 2.57 85
Cingulate gyrus 31 �8 �45 35 2.14 66
Inferior parietal lobule 39,40 �48 �62 38 4.14 204
Middle temporal gyrus 39 �49 �63 29 3.65 64
Posterior cingulate cortex/precuneus 7,23,31 �2 �52 39 3.85 387
Superior parietal lobule 7 �38 �68 44 2.81 27
Superior temporal gyrus 22,39 �51 �59 29 3.82 114
Supramarginal 40 59 �53 25 2.1 88
RSN2 (salience network)
Anterior cingulate 24,32 �2 24 23 4.13 244
Cingulate gyrus 32 �2 25 28 4.41 411
Anterior insula 13,47 �42 13 �2 4.17 410
Middle frontal gyrus 9,10 �28 52 21 3.44 216
Superior temporal gyrus 22,38 �48 15 �7 5.32 333
RSN3 (dorsal attention network)
Inferior parietal lobule 40 38 �52 56 4.4 628
Middle occipital gyrus 19,37 51 �63 �10 2.1 65
Middle temporal gyrus 19,37 55 �55 �9 2.0 50
Superior occipital gyrus 19 �30 �82 26 1.91 42
Superior parietal lobule 7 26 �63 57 6.5 1009
RSN4 (executive control network)
Anterior cingulate 24,32 4 34 �10 7.79 721
Caudate �6 13 �6 5.2 210
Inferior frontal gyrus 47 �22 23 �15 5.14 112
Middle frontal gyrus 10,11 �22 25 �15 5.27 70
Medial frontal gyrus 9,10 2 54 �3 6.85 351
Superior frontal gyrus 10 8 56 �1 5.49 132
RSN5 (visual network)
Cuneus 17,18,19 4 �91 8 7.59 1535
Lingual gyrus 17,18 2 �87 4 7.07 550
Inferior occipital gyrus 17 �10 �92 �7 2.21 8
Middle occipital gyrus 18,19 8 �93 14 6.61 331
RSN6 (memory network)
Cingulate gyrus 24,31 10 �45 37 1.78 103
Medial frontal gyrus 8,9 4 31 39 1.9 74
Middle frontal gyrus 6,8,9,10 42 48 �11 3.53 674
Middle temporal gyrus 21 65 �31 �5 2.42 126
Superior parietal lobule 7 44 �58 51 8.06 317
RSN7 (auditory network)
Anterior cingulate 24 2 32 11 2.4 117
Insula 13,40,41 46 �26 14 3.36 573
Middle temporal gyrus 21,22 65 �29 5 2.98 248
Postcentral gyrus 40,43 63 �21 14 4.82 252
Superior temporal gyrus 22,38,41 63 �21 10 5.35 1351
RSN8 (motor network)
Inferior parietal lobule 40 46 �32 57 4.11 549
Middle frontal gyrus 6,8,9 32 �7 61 2.49 122
Postcentral gyrus 1,2,3,4 40 �28 62 5.16 1475
Precentral gyrus 4,6 38 �28 62 4.76 872
Middle temporal gyrus 37 55 �62 1 1.67 20
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internal or external stimuli (42). It mainly includes the anterior
cingulate, anterior insula and middle frontal gyri.

• RSN3: the network overlapping with the dorsal attention
network (DAN), which is thought to mediate goal-directed
top–down processing (43,44). It primarily involves the middle

and superior occipital gyrus, inferior and superior parietal
gyrus, and middle temporal gyrus.

• RSN4: the network putatively associated with the executive
control network (ECN). It mainly includes the superior and
middle prefrontal cortices, anterior cingulate and ventrolateral

Table 3. Regions activated in patients with Alzheimer’s disease during the resting state (one-sample t-test results)

Brain region Brodmann
area

Talairach Maximal
Z score

Volume
(voxel)

x y z

RSN1 (default mode network)
Angular gyrus 39 �49 �68 31 2.97 126
Cingulate gyrus 23,24,31 �8 �45 34 3.38 523
Inferior parietal lobule 7,39,40 �42 �66 40 5.39 462
Middle temporal gyrus 39 �48 �63 29 3.37 75
Posterior cingulate cortex/precuneus 7,23,31 �2 �49 25 6.15 1571
Superior parietal lobule 7 �38 �68 44 5.04 189
Superior temporal gyrus 39 �46 �59 29 3.82 56
Supramarginal 40 55 �55 30 2.68 28
RSN2 (salience network)
Anterior cingulate 24,32 �2 24 23 3.16 141
Cingulate gyrus 32 �2 23 28 3.22 448
Anterior insula 13 40 11 �6 2.04 40
Middle frontal gyrus 10,46 44 49 12 1.65 10
Superior temporal gyrus 22,38,42 �61 �30 20 1.93 44
RSN3 (dorsal attention network)
Inferior parietal lobule 7,39,40 38 �52 56 4.52 385
Middle occipital gyrus 19,37 �32 �84 21 2.25 88
Middle temporal gyrus 19,37 57 �53 �7 2.45 86
Superior occipital gyrus 19 32 �80 28 2.61 128
Superior parietal lobule 5,7 26 �57 62 6.66 976
RSN4 (executive control network)
Anterior cingulate 24,32 4 33 �10 7.98 705
Caudate �4 11 �6 4.83 151
Inferior frontal gyrus 11,47 �20 22 �16 4.4 83
Middle frontal gyrus 10,11 �20 24 �16 4.38 22
Medial frontal gyrus 9,10,11 4 32 �12 8.04 425
Superior frontal gyrus 10 8 54 �1 4.48 41
RSN5 (visual network)
Cuneus 17,18,19 2 �87 14 6.68 1880
Lingual gyrus 17,18,19 �2 �87 4 5.88 611
Inferior occipital gyrus 17 �10 �91 �7 2.08 44
Middle occipital gyrus 18 8 �93 14 4.42 180
RSN6 (memory network)
Cingulate gyrus 31 4 �25 42 1.62 13
Medial frontal gyrus 6,8,9 20 64 4 2.07 80
Middle frontal gyrus 8,9,10 36 56 �6 3.61 915
Middle temporal gyrus 21,37,39 61 �49 �8 2.31 90
Superior parietal lobule 7 40 �55 56 7.25 177
RSN7 (auditory network)
Insula 13,40,41 46 �26 14 2.74 636
Middle temporal gyrus 21,22 �65 �29 5 3.63 308
Postcentral gyrus 40,43 �61 �23 14 4.51 253
Superior temporal gyrus 22,38,41 �63 �21 10 5.53 1833
RSN8 (motor network)
Inferior parietal lobule 39,40 46 �61 37 4.91 308
Middle frontal gyrus 6,8,9 53 2 39 3.19 122
Postcentral gyrus 1,3,4,43 59 �5 17 4.04 353
Precentral gyrus 6,41 55 �5 17 3.6 1474
Superior temporal gyrus 22 61 �3 9 3.71 127
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prefrontal cortex, involved in executive control and working
memory functions (45,46).

• RSN5: the network dedicated to visual processing (visual
network, VN) (47), which includes the lingual gyrus, bilateral
occipital cortex and the temporal/occipital regions.

• RSN6: the network related to memory (memory network, MeN)
(8), which is responsible for memory functions. It primarily
includes the middle frontal gyrus, middle temporal gyrus and
superior parietal gyrus.

• RSN7: the network involving the insular cortex, and the middle
and superior temporal gyri, responsible for auditory processing
(auditory network, AN) (48,49).

• RSN8: the network encompassing the precentral gyrus,
postcentral gyrus, middle frontal gyrus and middle temporal
gyrus, related to motor function (motor network, MoN) (9).

We compared the average Z scores of active voxels for each
selected RSN of patients with AD and normal controls. The average
Z scores of active voxels for each selected RSN of the two groups
are illustrated in Table 4. The average Z scores of active voxels of
DMN were significantly higher in patients with AD compared with
those in normal controls (p< 0.01). Moreover, the average Z
scores of active voxels of SN and MeN in patients with AD were
significantly lower than those in normal controls (p< 0.01).

Effective connectivity patterns of patients with AD and
normal controls

We explored the causal interactions using mGCA among the RSNs
detected via ICA in patients with AD and normal controls. The
effective connectivity patterns of brain networks are described as
directed graphs. The thicknesses of the connecting lines and the
directions of the arrows indicate the strengths and directions of
the causal influences, respectively. Figure 2 shows the Granger
casual connectivity measures within the eight RSNs. Only signifi-
cant effective connectivities (p< 0.01) were divided into four levels
(25%, 50%, 75% and 100%) relative to the maximum significant
dDTF value and presented in the graphs.
In normal controls (Fig. 2A), DMN was mostly connected with

other RSNs. DMN was strongly connected with DAN, SN, MoN

and AN. Strong causal interactions were also observed between
AN and SN, and AN and DAN. Compared with normal controls,
patients with AD (Fig. 2B) showed weaker Granger causal interac-
tions within the RSNs in terms of both intensity and quantity
(p< 0.01). It was particularly noteworthy that the intensities of
the interactions of DMN were weaker, whereas a strong bidirec-
tional regulation was forged between MeN and ECN.

In order to better evaluate the causal interactions among
RSNs, we show the ‘In degree’, ‘Out degree’ and ‘In + Out
degree’ for every RSN in the two networks in Fig. 3. In normal
controls, the mean ‘In + Out degree’ for every RSN was 4.5 and
SD was 2.88. DMN and AN served as hubs according to the
standard, and were not only central targets, but also central
sources, according to the standards. In patients with AD, the
mean ‘In +Out degree’ for every RSN was 3.25 and SD was
1.83. MeN was identified as the hub in patients with AD.
Meanwhile, MeN and AN served as central sources, whereas
ECN and MeN served as central targets, in the network in
patients with AD.

Table 4. Mean Z scores of active voxels of selected resting
state networks (RSNs) in patients with Alzheimer’s disease
(AD) and normal controls

AD Controls

DMN 2.7825� 0.19121 2.2908� 0.13521

SN 2.2746� 0.10351 2.3985� 0.10851

DAN 2.6909� 0.1708 2.5853� 0.1446
ECN 3.0298� 0.5502 2.9147� 0.3829
VN 2.9772� 0.4137 2.9957� 0.4416
MeN 2.5565� 0.11961 2.7853� 0.17051

AN 2.5124� 0.1519 2.4511� 0.1006
MoN 2.5898� 0.3325 2.3036� 0.1658
1Statistically significant difference at the p< 0.01 level.
AN, auditory network; DAN, dorsal attention network; DMN,
default mode network; ECN, executive control network;
MeN, memory network; MoN, motor network; SN, salience
network; VN, visual network.

Figure 2. Effective connectivity patterns of patients with Alzheimer’s
disease (AD) and normal controls (NC) from the multivariate Granger
causality analysis (mGCA) result. The red dots refer to the eight resting
state networks (RSNs). The relative causal influence strengths were divided
into four levels relative to the maximum significant direct directed transfer
function (dDTF) value, and are represented by the thicknesses of the green
lines. AN, auditory network; DAN, dorsal attention network; DMN, default
mode network; ECN, executive control network; MeN, memory network;
MoN, motor network; SN, salience network; VN, visual network.
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DISCUSSION

In this study, we combined ICA with mGCA to evaluate the
effective connectivity among RSNs of patients with AD and
normal controls. The main findings were as follows: (i) compared
with normal controls, patients with AD exhibited abnormal
effective connectivity patterns; (ii) the causal influence involving
DMN and AN was weaker in patients with AD, but stronger
causal connectivity emerged in relation to MeN and ECN.

ICA was successfully used to identify resting state components
in patients with AD and in normal controls. We were able to
examine the causality interactions between these RSNs and to

identify their effective connectivity using mGCA. We separated
and characterized the activity of eight RSNs, which overlapped
with DMN, SN, DAN, ECN, VN, MeN, AN and MoN, as defined
previously in neuroimaging studies on active behavior tasks
and the resting state (8,9,40,42,43,47,48,50). The DMN reflects
an ensemble of cortical regions typically deactivated during
demanding cognitive tasks in fMRI studies (40). The DMN has
been investigated in various disorders, including AD (10,51–53).
SN refers to interoceptive–autonomic processing (54) and
homeostatic functions (42), and has been found to show
enhanced connectivity in patients with AD (55). DAN appears
to be responsible for the preparation and selection for stimuli
and responses (43,44). A recent study has suggested that DAN
in patients with AD shows decreased intrinsic activity during rest
compared with that in normal controls (56). Areas in the ECN
have been hypothesized to provide bias signals to other
areas of the brain in order to implement cognitive control (45).
VN, AN, MeN and MoN relate to visual processing, auditory
processing, memory and motor functions, which have been
proposed to be brain intrinsic systems. Patients with AD usually
show impairments in all of these basic cognitive domains (1).
In addition to identifying the RSNs, the primary purpose of this

article was to evaluate their effective connectivity patterns. To
date, few studies have paid attention to the causal interactions
among RSNs in patients with AD. We found that, in normal
controls, DMN shows strong causal interactions with DAN, SN,
MoN and AN. However, the effective connectivity between
DMN and other RSNs in patients with AD is weaker in both inten-
sity and quantity. Previous studies on AD have found decreased
functional connectivity in DMN (10,51). The abnormal connectiv-
ity within the DMN and with other regions has been suggested
to be directly related to AD (52), and has been proposed as a
potential biomarker (51,53). Our findings from mGCA may
provide further support for the conclusion that the activity and
connectivity in the DMN are weaker in patients with AD (10).
Furthermore, we found that DMN and AN were central targets

and central sources in normal controls. A recent fMRI study on
DMN has demonstrated that a causal target in the neuronal
activity propagation process tends to have a stronger blood
oxygenation level-dependent activity, suggesting that causal
influences may predict the neuronal activity levels (35). Our
results suggest that the DMN is fundamental in the resting state
in normal controls, as it can integrate information from other
RSNs. However, in patients with AD, DMN was never the hub in
the network. We argue that the DMN plays a less important role
in patients with AD, as it shows a weaker connectivity. In addi-
tion, we found that MeN and AN emerged as central sources
and ECN and MeN served as central targets in patients with
AD. ECN and DMN have been found to play distinct roles in
the human brain functional structure (27). Therefore, we suggest
that, when the DMN shows decreased activity and connectivity
in patients with AD, ECN may compensate for these impair-
ments. Patients with AD usually show degeneration in basic
cognitive domains, such as memory and auditory domains (1).
Our results indicate that MeN and AN show greater connectivity
in patients with AD, which may reflect the compensatory
processes for the two RSNs.
In conclusion, the current investigation focused on the effective

connectivity patterns within RSNs in patients with AD and in
normal controls. We used ICA to identify RSNs from resting state
fMRI data, and mGCA to evaluate the causal interactions among
these RSNs. We found that, in patients with AD relative to normal

Figure 3. The ‘In degree’, ‘Out degree’ and ‘In+Out degree’ of each resting
state network (RSN) in the two multivariate Granger causality analysis
(mGCA) networks. A node with high ‘In degree’ can be considered to be
the central target of the network, whereas a node with high ‘Out degree’
can be considered to be the central source of the network. A nodewith ‘In +
Out degree’ at least one standard deviation greater than the average ‘In +
Out degree’ for all RSNswas identified as a hub in the network. AD, patients
with Alzheimer’s disease; AN, auditory network; DAN, dorsal attention
network; DMN, default mode network; ECN, executive control network;
MeN, memory network; MoN, motor network; NC, normal controls; SN,
salience network; VN, visual network.
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controls, DMN and AN showed weaker causal interactions with
other RSNs, whereas the causal connectivity of MeN and ECN
was stronger. This suggests that MeN and ECN may compensate
for the impairment of DMN and AN. These preliminary findings
may provide a new pathway towards the determination of the
neurophysiological mechanisms of AD.
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