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Abstract. Various types of advanced imaging technologies have sigmifiy improved the quality of medical care available
to patients. Corresponding medical image reconstructigorighms, especially 3D reconstruction, play an impottante in
disease diagnosis and treatment assessment. Howeverirtbesasing reconstruction methods are not implementadinified
software framework, which brings along lots of disadvaataguch as breaking connection of different modalities tfc
module reuse and inconvenience to method comparison. Bpierpgliscusses reconstruction process from the viewpbint o
data flow and implements a free, accelerated, extensibléedriReconstruction Software Framework (URSF). The softwar
framework is an abstract solution that supports multi-nhdmage reconstruction. The goal of this framework is to capt
the common processing work flow for different modalities difterent methods, make the development of reconstrudtion
new devices much easier, and implement a set of popular secetion algorithms, so that it is convenient for researshio
compare against. The overall design and certain key teopies are introduced in detail. Presented experiment elesnapd
practical applications commendably demonstrate the itslid this framework.
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1. Introduction

Modern medical imaging technologies, such as computed goapby (CT), ultrasound imaging
(US), magnetic resonance imaging (MRI), positron emisgiamography (PET), single photon emission
computed tomography (SPECT) and optical tomography, geotremendous benefits for easy disease
diagnoses. Corresponding medical image reconstructgoridims have been strongly developed and
practically implemented in almost every modern imaging alitgl but there are many problems which
still remain unresolved or can be improved. One seriouslprolis that there is no unified software
platform covering a wide spectrum of reconstruction meshddack of unified framework brings along
lots of disadvantages, such as breaking relationship leetdiéferent modalities, duplicate efforts during
code development and inconvenience to method comparisariaBwork flow can not be shared if two
methods are implemented in different platforms. Duringlenpentation of new methods, substantial
efforts should be spent on trivial but necessary code parxth as data module, data input module,
data output module, and algorithm interfaces, etc. Morgoslassic methods are coded again and
again by different researchers just for comparison ag#iest own methods. What is worse, imaging
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system developers have to put much more energy to desigmagefif there is no free and off-the-shelf
reconstruction framework. Aforementioned requiremengékenconsolidating existing reconstruction
algorithms to a unified software framework necessary.

Some researchers have designed modular reconstructterases in their imaging modalities. Thiele-
mans et al. have designed an open-source object-oriehtadfin C++ for 3D PET reconstruction [38].
The library is called Software for Tomographic Image Retartsion (STIR). In the library CPU Multi-
ple Instruction Multiple Data technique (MIMD) is suppatteCurrently, the emphasis of STIR is mainly
on iterative image reconstruction in PET. Cook and Bai hayglémented a free, open-source, object-
oriented software package for analysis and reconstructiatiffusion MRI data [6,7]. The software
package is called Camino which supports Windows, Mac OS Xlamgx. Camino supports a range
of standard and advanced diffusion MRI reconstructionritlgms. Jeff Fessler et al. have developed a
collection of open source algorithms for image reconsipnonritten in Matlab language. The software
is called Image Reconstruction Toolbox (IRT) [12]. The tmmt includes iterative and non-iterative al-
gorithms for tomographic imaging (PET, SPECT, X-ray CT)tmeels for MRI reconstruction, iterative
image restoration tools and so on. ASPIRE (A sparse prectaderative reconstruction library) is a
collection of ANSI C programs for tomographic image recamndion also developed by Jeff Fessler et
al. Central components of ASPIRE code are about spatialuti®so properties of image reconstruction
methods [11]. However, the newest version of ASPIRE onlgrmLinux and Mac OS X.

Although aforementioned toolkits are very powerful, theg aestricted and defective. STIR is
mainly for iterative PET reconstruction; Camino is only foiffusion MRI reconstruction; IRT is
written in Matlab language and not efficient enough; ASPIRBrily for sparse pre-computed iterative
reconstruction and not for Windows. There is still no unifiosoftware framework for multi-modal
medical image reconstruction which facilitates both usaggextension. Therefore, a free, extensible,
efficient and unified framework solution needs to be invegéd urgently.

This paper analyzes reconstruction process from the stémdpf work flow and implements a
unified reconstruction software framework, which providasbstract software solution for multi-modal
reconstruction. In URSF, raw data from different imagingides, data input/output (1/O) interfaces,
and reconstruction algorithms are encapsulated to modmlesuse. Meanwhile, lots of acceleration
techniques are also modularized, including CPU multigbresingle instruction multiple data (SIMD)
technique, graphic process unit (GPU) parallel technid®g 4nd out-of-core technique [44]. Modular
programming makes the platform easy to use and extend. dfartire, lots of classical reconstruction
algorithms have been implemented, which make URSF an eiégofatform for testing and comparing
different reconstruction methods. Currently, URSF haslimenbined with Medical Imaging ToolKit
(MITK) [39,51], which is a free toolkit for medical imaginghd analyzing.

In Section 2, we will first introduces inverse problem and kfbow idea in reconstruction. Section 3
will give the practical implementation details of URSF. leclon 4, we present experiments, while
Section 5 offers discussion of this framework. The lastieads about final conclusions as well as an
outlook onto the work ahead.

2. Inverseproblem and reconstruction methods

Inverse problem is a task that often occurs in medical im@ginere images of target must be obtained
from observed data [32]. Methods that solve inverse problame usually called reconstruction or
restoration. This section mainly introduces analytical i€Gonstruction and pixel-based freehand 3D
ultrasound reconstruction, since these two modalitieg haen integrated in URSF.



D. Dong et al. / Unified reconstruction framework for multedal medical imaging 113

Nowadays, CT is widely used in clinical diagnosis. The sasad# CT benefits from rapid develop-
ment of reconstruction methods and great improvement of&vicds [9,20]. Current CT reconstruction
methods are usually divided to analytic algorithms andcattee ones. By comparison with iterative
methods, analytic algorithms are more popular in practéggdlication. The first important analytic
method was Filtering Back Projection (FBP) method, whiclswpplied to 2D fan-beam reconstruc-
tion [5,35]. Then FBP method was extended to 3D cone-beaonsaiction with circular source
locus (FDK method) [10]. However, FDK is an approximate noeth When cone angle increases,
artifacts in reconstruction images deteriorate. Lots gfrioved algorithms were proposed to solve cone
angle artifacts, such as TFDK algorithm [16], shift-vatifiiering algorithm [48], weighted CB-FBP
algorithm [37] and so on [26]. To solve long object problerBPFalgorithm was extended to helical
trajectory reconstruction [41,42]. During the developtrexact reconstruction, Katsevich proposed
the first exact algorithm with FBP-type for cone-beam hékcanning locus [21,23]. After that, Zou et
al. proposed exact image reconstruction algorithm baseell-dines in helical cone-beam CT [55,56].
Then exact algorithms were greatly improved in generalsicgiocus [22,29-31,47,52,27].

3D ultrasound (3DUS) is also widely used for diagnostics imalge guidance in clinic. Although
3D ultrasound probes exist, the frequently used 2D US proaeslso perform 3DUS, which is usually
called freehand 3D ultrasound imaging [36]. However, atimiing sensor is demanded in freehand
3DUS for recording position data of each 2D image. Freehd#trasound reconstruction algorithms can
be classified into three categories: pixel-based algost{PBAs), voxel-based algorithms (VBAs) and
function-based algorithms (FBAs). PBAs traverse throughirels of 2D images and insert them into
related target volume voxels. VBAs traverse through allelsxn a target volume and fill them with
corresponding pixels. FBAs generate 3D volume by estimgdtinctions of input data [33,36]. A PBA
usually consists of two stages: a bin-filling stage (BFS) ariwle-filling stage (HFS). BFS traverses
all pixels in 2D ultrasound images and applies each pixeln® or several voxels. After BFS, there
are usually many empty voxels. HFS traverses all voxels disckfipty ones. Pixel Nearest Neighbor
(PNN) method is widely used in pixel-based algorithms. InSBEach pixel value is inserted to its
nearest voxel. If there are multiple contributions to a \pfteal value of the voxel can be average [14],
maximum [27] or most recent value [28]. Hole-filling stagésfikmpty voxels with average of nearby
voxels [27], maximum of nearby voxels [19] or median of ngambnzero voxels [19]. There are also
a number of PBAs without BFS-plus-HFS step. These methederse each pixel in 2D image and
assign pixel value to more than one voxels around the pixgtipa [3,25,28].

Pan et al. have described chain of data flow in CT reconstmuf32], which runs from projection views
to images. Through analyzing procedure of medical imagenstcuction, we find that reconstruction
methods in all modalities always follow data flow model. Restouction runs from observed medical
data and device information to images. Thus, similar wonk$lgan be shared by different methods or
even different modalities. Taking FBP-type methods in Glorestruction as an example, these methods
have two similar steps: filtering and back projection. Difet methods can share these similar steps
in a unified framework. For instance, FDK method with cireulacus and Katsevich method with
spiral locus have nearly the same back projection procesBesy both need to back project filtered
projection views to 3D volume. By using modular programmiRK method and Katsevich method
can share one back projection module together. Meanwhid@®-type methods are also widely used
in other tomography imaging such as MRI, PET and SPECT. BRBE-imethods in these modalities
can also share similar work flows. Our software frameworkreatly inspired by the work flow idea.
One of the aims of URSF is to modularize similar work flows arekethem easy to use. Moreover,
back projection steps have been implemented in URSF. Tdrexedill methods that have similar back
projection processes can share these existed modules.
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Fig. 1. Computational framework of URSF. The left part reygres reconstruction process in URSF. The right part means
post-processing on reconstruction result.

3. Software framework implementation

This section is divided into four parts to introduce basioaure of URSF in detail. Subsection 3.1
introduces overall design of this framework. Subsectiéhahd 3.3 are about CT sub-framework and
ultrasound sub-framework, respectively. The last sulbmeit mainly about acceleration techniques and
out-of-core data management.

3.1. Software framework overview

‘A software framework is a set of classes embodying an attsti@sign for solutions to a family of
related problems’ [4]. URSF is actually an abstract enclapisum of necessary reconstruction modules,
which include raw data module, 1/O interface module, aldponi module, etc.

Figure 1 shows computational framework of URSF. Medical gata from imaging devices and
necessary hardware information are abstracted to a Rawdlxs; medical regular data is abstracted
to a Volume class; reconstruction algorithms are abstact@ ReconstructionFilter class that receives
RawData and generates Volume. The pipeline from RawDataltoné forms a consistent reconstruction
data flow. After reconstruction, lots of post-processingpathms, such as segmentation, registration
and visualization, can be applied to reconstruction resuMoreover, both RawData and Volume are
connected to disk cache and manage data exchange betwermal@ind external storage, which provide
function of out-of-core data storage to this platform.

Figure 2 illustrates main modules in this framework. The %tan the figure means that preceding
variable is a pointer. Taking#m_InData:CTProjectionData*' in Fig. 2(b) as an example, itang that
CTReconstructionFilter has a member variablénData. minData is a pointer to CTProjectionData. As
shownin Fig. 2(a), there are two concrete subclasses oM&|LCVolume and OoCVolume. OoCVolume
is designed for containing out-of-core data. Itimplemeetsessary management functions of out-of-core
data, including storage buffer management, data exchatgebn main memory and hard disk, etc. This
class works very well when data are larger than memory chtyabihile ICVolume works faster when all
data can be loaded to main memory at one time. CTProjectiand®al TrackedBscanData, demonstrate
CT projection data and 2D ultrasound data, respectively.si#swvn in Fig. 2(b) ReconstructionFilter
is top-level abstraction of reconstruction algorithms. &7d freehand 3D ultrasound reconstruction
algorithms are abstracted as CTReconstructionFilter &SReconstructionFilter. Figure 2(c-d) show
input and output modules in URSF. Reader is an abstract inperface responsible for reading data
from disk, while Writer is responsible for writing data tes#lifiles. The 1/0O modules support various file
formats, i.e. BMP, JPEG, TIFF, DICOM, raw format, etc.
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Fig. 2. Main modules of URSF. (a) Data modules. (b) Recontsitra algorithm modules. (c) Input modules. (d) Output
modules.

3.2. CT reconstruction sub-framework

X-ray computed tomography is the first imaging modality #iédws non-destructive interior imaging
of an object. CT technology also greatly promoted develagroéother tomographic modalities [32,
43].

A powerful CT reconstruction sub-framework is implementetiich is based on existed modules in
URSF. Taking CTProjectionData as an example, it is an atts$tgbclass of RawData demonstrating
CT projection data. CT projection data can be classified fieréint groups using different criteria.
According to data acquisition mode, it can be sorted intedlnategories: parallel-beam projection data,
fan-beam projection data and cone-beam projection datahésn in Fig. 3, CT data are divided into two
groups: projection data from 2D object (2DBeamPD) and dosem projection data (ConeBeamPD).
Suffix “PD” means projection data. 2DBeamPD abstracts fg#labam projection data and fan-beam
projection data. 2DBeamRealTimePD and ConeBeamReal nae®two special classes which allow
sequential access of projection data. They are mainly eghdi real time reconstruction, which means
reconstruction is completed as soon as scan finishes.

Figure 4 shows inheritance hierarchy of CT reconstructlasses. According to projection data ac-
quisition mode, CT reconstruction algorithms are sortéd three classes: parallel-beam reconstruction
algorithms with circular scanning locus (ParallelBeanm@ircle), fan-beam reconstruction algorithms
with circular scanning locus (FanBeamFromCircle) and eloe@m reconstruction algorithms with he-
lical scanning locus (ConeBeamFromHelix). The circulanu® method is classified to helical locus
class because circle can be seen as a special helix withregbitero. Back projection step is the most
time-consuming step of FBP-type algorithms. As shown in Ejdack projection step is encapsulated
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Fig. 3. Inheritance hierarchy of CT data classes. CTPrigjeData is divided into two classes: 2DBeamPD and ConeB&amP
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Fig. 4. Inheritance hierarchy of CT reconstruction aldoritclasses.

to BackProjection class. BackProjection accepts filtemajeption views and related geometry infor-
mation, then backprojects them to each slice in 3D volumes Bdck projection step has already been
accelerated by GPU parallel scheme (BackProjectionUdtg)G

Furthermore, about a dozen algorithms have already bedanmgnted in CT sub-framework. Names
of these algorithms are regulated as Table 1. Taking CBKiatsR@econHCGPU for example, the
prefix “CB” means cone-beam projection, “Katsevich” stafatd<atsevich reconstruction method [23],
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Table 1
Regulation to name concrete CT reconstruction algorithms
Projection type Algorithm  Scanning locus  Detector type @ecation Hardware
FanBeam (FB) FBP Cricle (C) Curve (C) —
ConeBeam (CB) FDK Helix (H) Flat (F) GPU
ParallelBeam (PB) TFDK .. . CPU

Katsevich CELL

3DUSReconstructionFilter

#m_InData : TrackedBscanData*
#m_QutData : Volume*

+Run() : bool

[ [ |
3DUSPixelBased 3DUSVoxelBased | | 3DUSFunctionBased

#... #... #...
+...() +...() +...0

ZAN

| I |
3DUSPixelBasedST | [ 3DUSPixelBasedMT | | 3DUSPixelBasedGPU

#... #... #...
+Run() : bool +Run() : bool +Run() : bool

Fig. 5. Inheritance hierarchy of freehand 3D ultrasoun@mstruction classes.

“HC” represents helical scanning trajectory and curvecedetr, and the suffix “GPU” means this
algorithm has been accelerated by GPU technique. So CBKet$®econHCGPU represents an exact
Katsevich reconstruction algorithm based on helical doe@m data from a curved detector [46]. In
Table 1, “FDK” means Feldkamp-Davis-Kress algorithm whishithe most widely used cone-beam
reconstruction algorithm with circular locus [10], “TFDK&presents tent Feldkamp approach which is
a modified FDK method proposed by Grass et al. [16].

3.3. Freehand 3D ultrasound reconstruction sub-framework

A freehand 3D ultrasound reconstruction sub-frameworkdias been built up. Similar with CT
sub-framework, ultrasound sub-framework consolidatessdential modules such as ultrasound data
module, ultrasound data I/O interfaces and reconstru@igarithm module. Ultrasound raw data is
abstracted as TrackedBscanData which represents a de?ial @trasound images and corresponding
positioning data. Ultrasound data classes manage in-catevat-of-core storage as well as CT data
classes.

Figure 5 shows main inheritance hierarchy of ultrasoundnistruction classes. 3DUSPixelBased rep-
resents pixel-based algorithms. 3DUSVoxelBased abstrantel-based algorithms, while 3DUSFun-
tionBased means function-based algorithms. Three canpinetl-based methods (SDUSPixelBasedST,
3DUSPixelBasedMT and 3DUSPixelBasedGPU) have been ingited. 3DUSPixelBasedST repre-
sents classical PNN ultrasound method with single CPU thrda bin-filling stage of 3DUSPixel-
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Fig. 6. Advanced schemes in URSF. (a) Parallel acceler&tonework. (b) Out-of-core Storage.

BasedST, each pixel value is inserted into its nearest vdidblere are multiple contributions to a voxel,
final value of the voxel is average. The hole-filling stages fdimpty voxels with average of nearby
voxels. 3DUSPixelBasedMT accelerates PNN method with CRilli4tnread technique, while 3DUS-
PixelBasedGPU applies GPU parallel scheme on PNN methoxt.9detion will show that multi-thread
techniques especially GPU acceleration scheme can daihaspeed up reconstruction.

3.4. Some advanced schemes

Amount of data from imaging device continues to grow due twéasing precision. Taking micro-
CT system as an example, size of projection data is usualke imn 2 Gbyte and reconstruction
volume even larger [2,54]. It is a great challenge to perftast reconstruction on such huge amount of
data. Therefore, lots of acceleration schemes and datagearent techniques are implemented in this
framework. Figure 6 shows two main schemes, multi-threeluitigue and out-of-core data management.
GPU scheme has been applied to speed up time-consumingdsethovell.

3.4.1. Parallel acceleration framework

We have implemented a parallel acceleration architectut#RSF. Master/Worker design pattern is
quite suited to solve such parallel problems: dynamic Iaddrce; frequent switch between parallel part
and serial part; using different kinds of processors to datbrk [1,13,24]. Hence, Master/Worker design
pattern has been applied to organize this parallel framewis shown in Fig. 6(a), a ThreadMaster sets
up a pool of ThreadWorkers and a bag of reconstruction ta¥kseadWorkers execute concurrently,
with each thread repeatedly taking a task away from the taglahd processing it, until the bag is empty.
Actually, ThreadMaster first creates ThreadWorkers byaiaiithreadWorkerCreator provided by user,
then creates corresponding number of threads to drive theders. Task removing is done by threads,
while ThreadWorker simply do the tasks it receives. CondNMariable and Mutex are used when there
is any communication between ThreadWorkers. This paraliehework is suitable for speeding up
time-consuming reconstruction algorithms. Taking utttasd PNN mehtod as an example, both BFS
and HFS are ideal for parallel. In 3DUSPixelBasedMT, Thidaster divides BFS by images and sends
them to its ThreadWorkers. Then each ThreadWorker pros@ssdoop one image after another. When
all images are inserted to 3D volume, BFS is finished. HFSaslacated similarly.
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3.4.2. Out-of-core data storage

With increasing size of medical data, mass data problemrbesa great challenge to computing
hardware, especially to main memory. When data is larger thamory size, whole data can not be
loaded to main memory at one time, which is usually calledsytega problem. The most common
solution of this trouble is to apply auxiliary memory (outaore data management). However, without
an encapsulation of out-of-core data management, resaarbhve to additionally design special data
storage functions. URSF has implemented out-of-core dathuies which can be shared by all methods.
Figure 6(b) shows out-of-core storage management. A taémplass OoCStorage is implemented to
achieve out-of-core storage management, which coveragadsuffer management and data exchange
between main memory and hard disk. OoCVolume contains ahlarof OoCStorage to manage out-of-
core data, which makes a flexible structure. With such stred®oCVolume becomes basic out-of-core
data class. Other classes can gain out-of-core functiombtaming a variable of OoCVolume.

3.4.3. GPU scheme and SIMD technique

Current parallel framework only supports CPU thread, dibesmpport GPU thread yet. Although
not integrated in acceleration framework, GPU schemes &felyapplied in URSF. For instance,
back projection step of CT reconstruction has been actetbtey GPU parallelization in BackProjec-
tionUsingGPU class. The mapping between a projection viadvaaslice of 3D volume is a projection
transform [40], which is similar to projective texture mamgpin computer graphics [34]. Therefore,
BackProjectionUsingGPU is implemented by using textur@miteg on GPU [45]. With this back pro-
jection class, developers even new to GPU programming cpleiment efficient FBP-type methods with
great ease. Meanwhile, CPU SIMD technique has also beeiedpplback projection. SIMD technique
is the ability to perform same operation on multiple dataudiemeously. Better performance can be
achieved using this data level parallelism, since lessesyale used with the same amount of data [49]. In
FBFBPReconCFCPU and CBFDKReconCFCPU, instructions ik pagjection such as interpolation,
weighting, and accumulation are all implemented with SIMZhat's more, GPU scheme has also been
applied to ultrasound methods. In 3DUSPixelBasedGPU bétB Bnd HFS are accelerated by GPU
threads. Due to powerful parallel computing capability 1l G GPU based methods are much faster
than normal CPU methods.

4. Experiment examples

We have testified this framework by performing some expenisief CT and 3DUS. The following
experiments show URSF’s great power of comparing differeathods. These experiments are per-
formed on a Windows-PC, with an Intel Core2 2.66 GHz CPU (lpe®d is 266 MHz), a 2GByte DDR2
memory, and a NVIDIA GTX 275 GPU card [18].

4.1. Comparison of different circular fan-beam CT algonith

Figure 7 shows a comparison of different circular fan-bed@nCX reconstruction. There are three
methods for equal-spaced detector in URSF: FBFBPReconOREBP method accelerated by GPU),
FBFBPReconCFCPU (FBP method accelerated by SIMD techpiigF-BPReconCF (FBP method
based on single CPU thread). The performances of these deaine tested on a 2D Shepp-Logan phan-
tom. Sinogram is calculated from 2D Shepp-Logan phantortyacaly with parameters: maximum
value of phantom pixel (2.000), minimum value of phantomepi(0.000), detector element number
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Table 2
Performance comparison of different circular fan-beam ADr&onstruction
methods
FBFBPReconCFGPU FBFBPReconCFCPU FBFBPReconCF
time 0.624s 1.326s 4.960s
MSE 0.007 0.008 0.007

(a) (®) (© (d

Fig. 7. CT reconstruction results on a 2D Shepp-Logan plmant¢a) Original 2D phantom. (b) Image reconstructed by
FBFBPReconCFGPU. (c) Image reconstructed by FBFBPRedBRCK(d) Image reconstructed by FBFBPReconCF.

() (b) © (d (e

Fig. 8. CT reconstruction results on a 3D Shepp-Logan pan{@) A slice of original phantom. (b) The same slice recon-
structed by CBFDKReconCFGPU. (c) The same slice recortstilay CBFDKReconCFCPU. (d) The same slice reconstructed
by CBFDKReconCF. (e) The same slice reconstructed by CBTR&NCF.

(672), number of projection angle (720) and data type (32Hmting point). All these methods are
appliedtoreconstruct 512 512 image from sinogram. Fig. 7(a) shows original 2D phantbig. 7(b-d)
show reconstruction results by the three methods. Table@sheconstruction time (time of reading
sinogram from disk and storing result to disk are not inct)@sd Mean Squared Errors (MSES) between
original phantom and three results. We can see that GPU hétHiaster than CPU methods. Moreover,
errors between reconstruction images and original phaaterwery small.

4.2. Comparison of different circular cone-beam CT alduris

Figure 8 shows a comparison of different circular cone-b&DnCT reconstruction. There are
four approximate reconstruction methods for flat-panetcter in URSF: CBFDKReconCFGPU (FDK
method accelerated by GPU), CBFDKReconCFCPU (FDK methedlaated by CPU SIMD tech-
nique), CBFDKReconCF (FDK method based on single CPU thr€RITFDKReconCF (TFDK method
based on single CPU thread). The performances of these dsedin® tested on a 3D Shepp-Logan phan-
tom. Amount of projection data is about 400 Mbyte with 360n8e All these methods are applied to
reconstruct 512 cubed volume. Figure 8(a) shows 194th efiegiginal 3D phantom. Figure 8(b-€)
show the same slices reconstructed by above-mentionedifetinods, which seem nearly the same with
original slice. Table 3 shows reconstruction time and MS&w/ben results and original 3D phantom. By
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Table 3
Performance comparison of different circular cone-beanC3Dreconstruction methods
CBFDKReconCFGPU CBFDKReconCFCPU CBFDKReconCF CBTFDKREF

time 6.226s 824.625s 1137.203s 1319.205s
MSE 0.006 0.009 0.008 0.012

(a) (b) (c)

Fig. 9. A CT reconstruction experiment on a mouse with GPllecated FDK method. (a) One project view of the mouse.
(b) One slice of the reconstructed volume. (c) Bone stradbyrsurface rendering.

taking advantage of a great many GPU parallel cores, CBFRKREFGPU behaves more powerfully
than other three methods. Although there are some errongbatreconstruction volumes and original
3D phantom, results are acceptable.

4.3. CT reconstruction on mass data

Figure 9 shows reconstruction result of a anesthetized enodi$ie mouse is scanned by our own
Micro-CT system [54] with a circular scanning locus. The f@mof projection views is 500 with each
projection size of 2240« 2344. Total size of projection data is about 5Gbyte and 3Diwe size is
512 x 512 x 512. GPU accelerated FDK method is applied to constructEheaddume. The total time
is only 182.680 seconds which includes reading data frot alisl reconstructing 3D volume. In this
experiment out-of-core technique is used because datesdager than size of main memory. In Fig. 9,
(a) shows one projection view; (b) shows one slice of recanttd 3D volume; and (c) shows bone
structure of the mouse. The bone is extracted and shown byn&isional Medical Image Processing
and Analyzing system (3DMed) [39,50].

4.4. Freehand 3D ultrasound reconstruction on a foetus pdran

To evaluate ultrasound methods, we acquired 3000 B-scageisnaom a plastic phantom (hollow)
with our ultrasound system [8]. Each 2D ultrasound image isi552x 274 x 8bits. Then 3D volumes
(374 x 281 x 274) are obtained from three ultrasound reconstructiorhotst Figure 10 shows the
plastic phantom and results by 3DUSPixelBasedGPU, 3DUSBasedMT and 3DUSPixelBasedST.
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Table 4
Performance comparison of different ultrasound methods
3DPixelBasedGPU 3DPixelBasedMT 3DPixelBasedST

time 6.226s 824.625s 1137.203s
MSE 0.069 0.136 0.000

Fig. 10. Freehand ultrasound reconstruction experimerd pfastic phantom. (a) The hollow plastic phantom. (b) Vol-
ume reconstructed by 3DUSPixelBasedGPU. (c) Volume reéamted by 3DUSPixelBasedMT. (d) Volume reconstructed by
3DUSPixelBasedST.

(a) (b)

Fig. 11. Freehand ultrasound reconstruction experimein givo hepatic data set. (a) Some slices of the hepatic data set. (b)
Volume rendering result of reconstructed 3D volume.

Table 4 shows reconstruction time of each method and MSkgeet 3DPixelBasedST and other two
methods. Result of 3DPixelBasedST is taken as a standagastifytother two accelerated methods.
3DPixelBasedGPU performs 26.4 times faster than 3DUSBasddST. Meanwhile, the errors between
3DUSPixelBasedST and accelerated methods are very smdlthare is no obvious visual difference
in results.

4.5. Freehand 3D ultrasound reconstruction on in vivo dat s

Figure 11 shows an ultrasound reconstruction experimetat bapatic data set. The dataset is 135
B-scan images from an vivohuman liver (original data is from the Medical Imaging GroUmiversity
of Cambridge [17]). Figure 11(a) shows some slices of thas#t 3D volume is reconstructed by
3DUSPixelBasedGPU. Figure 11(b) shows volume renderisigitref reconstruction volume.



D. Dong et al. / Unified reconstruction framework for multedal medical imaging 123

Table 5
Comparison of URSF with other software framework
Framework|
Criteri URSF STIR Camino IRT ASPIRE
riteria
T hi T hi
Nearly all medical Interactive PET | Diffusion-MRI omograp' ' omograp .]C
Concerned field | . . . . . reconstruction, | sparse iterative
imaging modalities reconstruction Reconstruction . . .
MR imaging reconstruction
Operating X Windows, Linux, | Windows, Linux, . .
A% L M X
system indows AIX, Solaris Mac OS X, Windows inux, Mac OS
Programming c/C++ CH Java Matlab C
language
Free or not Free Free Free Free Free
S d . .
ource code Open interfaces Open source Open source Open source Open interfaces

available or not
Acceleration Multi-thread, SIMD,

MIMD N
scheme GPU No © No
M t: .
ass data Out-of-Core technique No No No No
scheme
Real-t.u‘ne support rea.l-tlme No No No No
capability processing

segmentation,

Post-processin; . .
P J registration, No No No No

t . .
suppor visualization, etc.
BMP, JPEG, TIFF, | GE Advance |Images in Analyze fld format of AVS
. . JPEG, raw format| (Application
File format DICOM, raw format, |sonogram format,| format or in raw . L
and other formats| Visualization
etc. ECAT 6/7 format format
System)
Devel Email, web X . . . .
eveloper m arl, webpage Email, webpage | Email, webpage | Email, webpage | Email, webpage
support internet forum
Update Three times a year Nearly once a M(?re than three | About six times a Sporadically
frequency year times a year year

User manual, APl and | User manual, User manual,
Documentation | software architecture | Source code and | Source code and | Source code and
. End-user manual
and manual documents, internet software software remarks

forum pages, examples documents documents

5. Discussion

From the standpoint of data flow, reconstruction processesimilar in different modalities. There-
fore, new things in one modality can promote innovation imeotmodalities. With this work flow idea
and modular structure, URSF provides a powerful tool fohksitientists and engineers. The flexible
architecture reduces efforts and time for further develepimMeanwhile, new reconstruction methods
and modalities can be integrated to this framework with gezese. The above-mentioned CT and
ultrasound sub-frameworks are very good examples for iategn of new modalities. On the other
hand, the platform is user-friendly. It provides standaglit and output interfaces, which can exchange
data with conventional image formats, i.e. BMP, JPEG, TIHEOM, raw format, etc. Moreover, this
framework offers a complete solution for some key issueslid with reconstruction such as mass data
problem and time-consuming problem. Out-of-core data mement has solved mass data problem
effectively, and moreover, acceleration framework and Géthniques have solved time-consuming
problem. What's more, URSF is an effective platform for noetcomparison. Researchers can compare
their own methods against existed algorithms. Nowaday$SERas been applied to lots of engineering
projects, such as fossil scanning software system usingstridl CT, our own micro-CT system [54],
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lossless defect detection using industrial CT, surgerganmming and navigation for ultrasound guided
tumor ablation [53], etc.

Bohn et al. have proposed a process and criteria for evatuatisoftware frameworks in the domain of
computer assisted surgery [4]. 63 evaluation criteria teen defined to evaluate software frameworks
in that paper. We have chosen some criteria to provide arctgeevaluation of our reconstruction
framework and other frameworks. Table 5 shows comparis@iR8F with other four frameworks under
13 criteria. We can see that URSF has lots of advantages hobomany concerned fields, but also on
well designed architecture and quality technical supports

6. Conclusionsand future perspective

This paper discusses inverse problems in medical imagingamalyzes reconstruction from the
viewpoint of work flow. The goal of this project is to developsaftware framework which covers
reconstruction methods for multi-modal medical imaginpe Experimental results above demonstrate
that this framework is well suited to implement and accééecamputationally intensive reconstruction.
Moreover, two sub-frameworks and lots of advanced schemegrasented in detail, which will be
meaningful for other engineers.

Currently, URSF has combined with MITK 2.3.0 version, whgdn be downloaded free of charge
at www.mitk.net. With URSF, MITK becomes a general algaritplatform for medical imaging and
analyzing. Nowadays, MITK has both Windows and Linux vansidut URSF only runs under Windows.
Further extension to other operating systems will be a nmggliwork. In addition, integration of more
modalities and more practical algorithms to URSF will beragiterm task.
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