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Abstract. Various types of advanced imaging technologies have significantly improved the quality of medical care available
to patients. Corresponding medical image reconstruction algorithms, especially 3D reconstruction, play an important role in
disease diagnosis and treatment assessment. However, these increasing reconstruction methods are not implemented ina unified
software framework, which brings along lots of disadvantages such as breaking connection of different modalities, lack of
module reuse and inconvenience to method comparison. This paper discusses reconstruction process from the viewpoint of
data flow and implements a free, accelerated, extensible Unified Reconstruction Software Framework (URSF). The software
framework is an abstract solution that supports multi-modal image reconstruction. The goal of this framework is to capture
the common processing work flow for different modalities anddifferent methods, make the development of reconstructionfor
new devices much easier, and implement a set of popular reconstruction algorithms, so that it is convenient for researchers to
compare against. The overall design and certain key technologies are introduced in detail. Presented experiment examples and
practical applications commendably demonstrate the validity of this framework.
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1. Introduction

Modern medical imaging technologies, such as computed tomography (CT), ultrasound imaging
(US), magnetic resonance imaging (MRI), positron emissiontomography (PET), single photon emission
computed tomography (SPECT) and optical tomography, provide tremendous benefits for easy disease
diagnoses. Corresponding medical image reconstruction algorithms have been strongly developed and
practically implemented in almost every modern imaging modality, but there are many problems which
still remain unresolved or can be improved. One serious problem is that there is no unified software
platform covering a wide spectrum of reconstruction methods. Lack of unified framework brings along
lots of disadvantages, such as breaking relationship between different modalities, duplicate efforts during
code development and inconvenience to method comparison. Similar work flow can not be shared if two
methods are implemented in different platforms. During implementation of new methods, substantial
efforts should be spent on trivial but necessary code parts such as data module, data input module,
data output module, and algorithm interfaces, etc. Moreover, classic methods are coded again and
again by different researchers just for comparison againsttheir own methods. What is worse, imaging
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system developers have to put much more energy to design software if there is no free and off-the-shelf
reconstruction framework. Aforementioned requirements make consolidating existing reconstruction
algorithms to a unified software framework necessary.

Some researchers have designed modular reconstruction softwares in their imaging modalities. Thiele-
mans et al. have designed an open-source object-oriented library in C++ for 3D PET reconstruction [38].
The library is called Software for Tomographic Image Reconstruction (STIR). In the library CPU Multi-
ple Instruction Multiple Data technique (MIMD) is supported. Currently, the emphasis of STIR is mainly
on iterative image reconstruction in PET. Cook and Bai have implemented a free, open-source, object-
oriented software package for analysis and reconstructionof diffusion MRI data [6,7]. The software
package is called Camino which supports Windows, Mac OS X andLinux. Camino supports a range
of standard and advanced diffusion MRI reconstruction algorithms. Jeff Fessler et al. have developed a
collection of open source algorithms for image reconstruction written in Matlab language. The software
is called Image Reconstruction Toolbox (IRT) [12]. The toolbox includes iterative and non-iterative al-
gorithms for tomographic imaging (PET, SPECT, X-ray CT), methods for MRI reconstruction, iterative
image restoration tools and so on. ASPIRE (A sparse precomputed iterative reconstruction library) is a
collection of ANSI C programs for tomographic image reconstruction also developed by Jeff Fessler et
al. Central components of ASPIRE code are about spatial resolution properties of image reconstruction
methods [11]. However, the newest version of ASPIRE only runs on Linux and Mac OS X.

Although aforementioned toolkits are very powerful, they are restricted and defective. STIR is
mainly for iterative PET reconstruction; Camino is only fordiffusion MRI reconstruction; IRT is
written in Matlab language and not efficient enough; ASPIRE is only for sparse pre-computed iterative
reconstruction and not for Windows. There is still no uniform software framework for multi-modal
medical image reconstruction which facilitates both usageand extension. Therefore, a free, extensible,
efficient and unified framework solution needs to be investigated urgently.

This paper analyzes reconstruction process from the standpoint of work flow and implements a
unified reconstruction software framework, which providesan abstract software solution for multi-modal
reconstruction. In URSF, raw data from different imaging devices, data input/output (I/O) interfaces,
and reconstruction algorithms are encapsulated to modulesfor reuse. Meanwhile, lots of acceleration
techniques are also modularized, including CPU multi-thread, single instruction multiple data (SIMD)
technique, graphic process unit (GPU) parallel technique [15] and out-of-core technique [44]. Modular
programming makes the platform easy to use and extend. Furthermore, lots of classical reconstruction
algorithms have been implemented, which make URSF an effective platform for testing and comparing
different reconstruction methods. Currently, URSF has been combined with Medical Imaging ToolKit
(MITK) [39,51], which is a free toolkit for medical imaging and analyzing.

In Section 2, we will first introduces inverse problem and work flow idea in reconstruction. Section 3
will give the practical implementation details of URSF. In Section 4, we present experiments, while
Section 5 offers discussion of this framework. The last section is about final conclusions as well as an
outlook onto the work ahead.

2. Inverse problem and reconstruction methods

Inverse problem is a task that often occurs in medical imaging where images of target must be obtained
from observed data [32]. Methods that solve inverse problems are usually called reconstruction or
restoration. This section mainly introduces analytical CTreconstruction and pixel-based freehand 3D
ultrasound reconstruction, since these two modalities have been integrated in URSF.
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Nowadays, CT is widely used in clinical diagnosis. The success of CT benefits from rapid develop-
ment of reconstruction methods and great improvement of CT devices [9,20]. Current CT reconstruction
methods are usually divided to analytic algorithms and iterative ones. By comparison with iterative
methods, analytic algorithms are more popular in practicalapplication. The first important analytic
method was Filtering Back Projection (FBP) method, which was applied to 2D fan-beam reconstruc-
tion [5,35]. Then FBP method was extended to 3D cone-beam reconstruction with circular source
locus (FDK method) [10]. However, FDK is an approximate method. When cone angle increases,
artifacts in reconstruction images deteriorate. Lots of improved algorithms were proposed to solve cone
angle artifacts, such as TFDK algorithm [16], shift-variant filtering algorithm [48], weighted CB-FBP
algorithm [37] and so on [26]. To solve long object problem, FBP algorithm was extended to helical
trajectory reconstruction [41,42]. During the development of exact reconstruction, Katsevich proposed
the first exact algorithm with FBP-type for cone-beam helical scanning locus [21,23]. After that, Zou et
al. proposed exact image reconstruction algorithm based onPI-lines in helical cone-beam CT [55,56].
Then exact algorithms were greatly improved in general scanning locus [22,29–31,47,52,27].

3D ultrasound (3DUS) is also widely used for diagnostics andimage guidance in clinic. Although
3D ultrasound probes exist, the frequently used 2D US probescan also perform 3DUS, which is usually
called freehand 3D ultrasound imaging [36]. However, a positioning sensor is demanded in freehand
3DUS for recording position data of each 2D image. Freehand ultrasound reconstruction algorithms can
be classified into three categories: pixel-based algorithms (PBAs), voxel-based algorithms (VBAs) and
function-based algorithms (FBAs). PBAs traverse through all pixels of 2D images and insert them into
related target volume voxels. VBAs traverse through all voxels in a target volume and fill them with
corresponding pixels. FBAs generate 3D volume by estimating functions of input data [33,36]. A PBA
usually consists of two stages: a bin-filling stage (BFS) anda hole-filling stage (HFS). BFS traverses
all pixels in 2D ultrasound images and applies each pixel to one or several voxels. After BFS, there
are usually many empty voxels. HFS traverses all voxels and fills empty ones. Pixel Nearest Neighbor
(PNN) method is widely used in pixel-based algorithms. In BFS, each pixel value is inserted to its
nearest voxel. If there are multiple contributions to a voxel, final value of the voxel can be average [14],
maximum [27] or most recent value [28]. Hole-filling stage fills empty voxels with average of nearby
voxels [27], maximum of nearby voxels [19] or median of nearby nonzero voxels [19]. There are also
a number of PBAs without BFS-plus-HFS step. These methods traverse each pixel in 2D image and
assign pixel value to more than one voxels around the pixel position [3,25,28].

Pan et al. have described chain of data flow in CT reconstruction [32], which runs from projection views
to images. Through analyzing procedure of medical image reconstruction, we find that reconstruction
methods in all modalities always follow data flow model. Reconstruction runs from observed medical
data and device information to images. Thus, similar work flows can be shared by different methods or
even different modalities. Taking FBP-type methods in CT reconstruction as an example, these methods
have two similar steps: filtering and back projection. Different methods can share these similar steps
in a unified framework. For instance, FDK method with circular locus and Katsevich method with
spiral locus have nearly the same back projection processes. They both need to back project filtered
projection views to 3D volume. By using modular programming, FDK method and Katsevich method
can share one back projection module together. Meanwhile, FBP-type methods are also widely used
in other tomography imaging such as MRI, PET and SPECT. FBP-type methods in these modalities
can also share similar work flows. Our software framework is greatly inspired by the work flow idea.
One of the aims of URSF is to modularize similar work flows and make them easy to use. Moreover,
back projection steps have been implemented in URSF. Therefore, all methods that have similar back
projection processes can share these existed modules.
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Fig. 1. Computational framework of URSF. The left part represents reconstruction process in URSF. The right part means
post-processing on reconstruction result.

3. Software framework implementation

This section is divided into four parts to introduce basic structure of URSF in detail. Subsection 3.1
introduces overall design of this framework. Subsection 3.2 and 3.3 are about CT sub-framework and
ultrasound sub-framework, respectively. The last subsection is mainly about acceleration techniques and
out-of-core data management.

3.1. Software framework overview

‘A software framework is a set of classes embodying an abstract design for solutions to a family of
related problems’ [4]. URSF is actually an abstract encapsulation of necessary reconstruction modules,
which include raw data module, I/O interface module, algorithm module, etc.

Figure 1 shows computational framework of URSF. Medical rawdata from imaging devices and
necessary hardware information are abstracted to a RawDataclass; medical regular data is abstracted
to a Volume class; reconstruction algorithms are abstracted to a ReconstructionFilter class that receives
RawData and generates Volume. The pipeline from RawData to Volume forms a consistent reconstruction
data flow. After reconstruction, lots of post-processing algorithms, such as segmentation, registration
and visualization, can be applied to reconstruction results. Moreover, both RawData and Volume are
connected to disk cache and manage data exchange between internal and external storage, which provide
function of out-of-core data storage to this platform.

Figure 2 illustrates main modules in this framework. The star ‘*’ in the figure means that preceding
variable is a pointer. Taking ’#m InData:CTProjectionData*’ in Fig. 2(b) as an example, it means that
CTReconstructionFilter has a member variable mInData. mInData is a pointer to CTProjectionData. As
shown in Fig. 2(a), there are two concrete subclasses of Volume, ICVolume and OoCVolume. OoCVolume
is designed for containing out-of-core data. It implementsnecessary management functions of out-of-core
data, including storage buffer management, data exchangebetween main memory and hard disk, etc. This
class works very well when data are larger than memory capability. While ICVolume works faster when all
data can be loaded to main memory at one time. CTProjectionData and TrackedBscanData, demonstrate
CT projection data and 2D ultrasound data, respectively. Asshown in Fig. 2(b) ReconstructionFilter
is top-level abstraction of reconstruction algorithms. CTand freehand 3D ultrasound reconstruction
algorithms are abstracted as CTReconstructionFilter and 3DUSReconstructionFilter. Figure 2(c-d) show
input and output modules in URSF. Reader is an abstract inputinterface responsible for reading data
from disk, while Writer is responsible for writing data to disk files. The I/O modules support various file
formats, i.e. BMP, JPEG, TIFF, DICOM, raw format, etc.
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Fig. 2. Main modules of URSF. (a) Data modules. (b) Reconstruction algorithm modules. (c) Input modules. (d) Output
modules.

3.2. CT reconstruction sub-framework

X-ray computed tomography is the first imaging modality thatallows non-destructive interior imaging
of an object. CT technology also greatly promoted development of other tomographic modalities [32,
43].

A powerful CT reconstruction sub-framework is implemented, which is based on existed modules in
URSF. Taking CTProjectionData as an example, it is an abstract subclass of RawData demonstrating
CT projection data. CT projection data can be classified to different groups using different criteria.
According to data acquisition mode, it can be sorted into three categories: parallel-beam projection data,
fan-beam projection data and cone-beam projection data. Asshown in Fig. 3, CT data are divided into two
groups: projection data from 2D object (2DBeamPD) and cone-beam projection data (ConeBeamPD).
Suffix “PD” means projection data. 2DBeamPD abstracts parallel-beam projection data and fan-beam
projection data. 2DBeamRealTimePD and ConeBeamRealTimePD are two special classes which allow
sequential access of projection data. They are mainly applied to real time reconstruction, which means
reconstruction is completed as soon as scan finishes.

Figure 4 shows inheritance hierarchy of CT reconstruction classes. According to projection data ac-
quisition mode, CT reconstruction algorithms are sorted into three classes: parallel-beam reconstruction
algorithms with circular scanning locus (ParallelBeamFromCircle), fan-beam reconstruction algorithms
with circular scanning locus (FanBeamFromCircle) and cone-beam reconstruction algorithms with he-
lical scanning locus (ConeBeamFromHelix). The circular locus method is classified to helical locus
class because circle can be seen as a special helix with a pitch of zero. Back projection step is the most
time-consuming step of FBP-type algorithms. As shown in Fig. 4, back projection step is encapsulated
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CTProjectionData
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Fig. 3. Inheritance hierarchy of CT data classes. CTProjectionData is divided into two classes: 2DBeamPD and ConeBeamPD.
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Fig. 4. Inheritance hierarchy of CT reconstruction algorithm classes.

to BackProjection class. BackProjection accepts filtered projection views and related geometry infor-
mation, then backprojects them to each slice in 3D volume. The back projection step has already been
accelerated by GPU parallel scheme (BackProjectionUsingGPU).

Furthermore, about a dozen algorithms have already been implemented in CT sub-framework. Names
of these algorithms are regulated as Table 1. Taking CBKatsevichReconHCGPU for example, the
prefix “CB” means cone-beam projection, “Katsevich” standsfor Katsevich reconstruction method [23],



D. Dong et al. / Unified reconstruction framework for multi-modal medical imaging 117

Table 1
Regulation to name concrete CT reconstruction algorithms

Projection type Algorithm Scanning locus Detector type Acceleration Hardware
FanBeam (FB) FBP Cricle (C) Curve (C) −

ConeBeam (CB) FDK Helix (H) Flat (F) GPU
ParallelBeam (PB) TFDK . . . . . . CPU

Katsevich CELL
. . . . . .

+Run() : bool

#m_InData : TrackedBscanData*
#m_OutData : Volume*

3DUSReconstructionFilter

+Run() : bool
#...
3DUSPixelBasedMT

+Run() : bool
#...
3DUSPixelBasedGPU

+Run() : bool
#...
3DUSPixelBasedST

+...()
#...
3DUSPixelBased

+...()
#...
3DUSFunctionBased

+...()
#...
3DUSVoxelBased

Fig. 5. Inheritance hierarchy of freehand 3D ultrasound reconstruction classes.

“HC” represents helical scanning trajectory and curved detector, and the suffix “GPU” means this
algorithm has been accelerated by GPU technique. So CBKatsevichReconHCGPU represents an exact
Katsevich reconstruction algorithm based on helical cone-beam data from a curved detector [46]. In
Table 1, “FDK” means Feldkamp-Davis-Kress algorithm whichis the most widely used cone-beam
reconstruction algorithm with circular locus [10], “TFDK”represents tent Feldkamp approach which is
a modified FDK method proposed by Grass et al. [16].

3.3. Freehand 3D ultrasound reconstruction sub-framework

A freehand 3D ultrasound reconstruction sub-framework hasalso been built up. Similar with CT
sub-framework, ultrasound sub-framework consolidates all essential modules such as ultrasound data
module, ultrasound data I/O interfaces and reconstructionalgorithm module. Ultrasound raw data is
abstracted as TrackedBscanData which represents a serial of 2D ultrasound images and corresponding
positioning data. Ultrasound data classes manage in-core and out-of-core storage as well as CT data
classes.

Figure 5 shows main inheritance hierarchy of ultrasound reconstruction classes. 3DUSPixelBased rep-
resents pixel-based algorithms. 3DUSVoxelBased abstracts voxel-based algorithms, while 3DUSFun-
tionBased means function-based algorithms. Three concrete pixel-based methods (3DUSPixelBasedST,
3DUSPixelBasedMT and 3DUSPixelBasedGPU) have been implemented. 3DUSPixelBasedST repre-
sents classical PNN ultrasound method with single CPU thread. In bin-filling stage of 3DUSPixel-
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Fig. 6. Advanced schemes in URSF. (a) Parallel accelerationframework. (b) Out-of-core Storage.

BasedST, each pixel value is inserted into its nearest voxel. If there are multiple contributions to a voxel,
final value of the voxel is average. The hole-filling stage fills empty voxels with average of nearby
voxels. 3DUSPixelBasedMT accelerates PNN method with CPU multi-thread technique, while 3DUS-
PixelBasedGPU applies GPU parallel scheme on PNN method. Next section will show that multi-thread
techniques especially GPU acceleration scheme can dramatically speed up reconstruction.

3.4. Some advanced schemes

Amount of data from imaging device continues to grow due to increasing precision. Taking micro-
CT system as an example, size of projection data is usually more than 2 Gbyte and reconstruction
volume even larger [2,54]. It is a great challenge to performfast reconstruction on such huge amount of
data. Therefore, lots of acceleration schemes and data management techniques are implemented in this
framework. Figure 6 shows two main schemes, multi-thread technique and out-of-core data management.
GPU scheme has been applied to speed up time-consuming methods as well.

3.4.1. Parallel acceleration framework
We have implemented a parallel acceleration architecture in URSF. Master/Worker design pattern is

quite suited to solve such parallel problems: dynamic load balance; frequent switch between parallel part
and serial part; using different kinds of processors to do the work [1,13,24]. Hence, Master/Worker design
pattern has been applied to organize this parallel framework. As shown in Fig. 6(a), a ThreadMaster sets
up a pool of ThreadWorkers and a bag of reconstruction tasks.ThreadWorkers execute concurrently,
with each thread repeatedly taking a task away from the task bag and processing it, until the bag is empty.
Actually, ThreadMaster first creates ThreadWorkers by using a ThreadWorkerCreator provided by user,
then creates corresponding number of threads to drive theseworkers. Task removing is done by threads,
while ThreadWorker simply do the tasks it receives. ConditionVariable and Mutex are used when there
is any communication between ThreadWorkers. This parallelframework is suitable for speeding up
time-consuming reconstruction algorithms. Taking ultrasound PNN mehtod as an example, both BFS
and HFS are ideal for parallel. In 3DUSPixelBasedMT, ThreadMaster divides BFS by images and sends
them to its ThreadWorkers. Then each ThreadWorker processes in a loop one image after another. When
all images are inserted to 3D volume, BFS is finished. HFS is accelerated similarly.
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3.4.2. Out-of-core data storage
With increasing size of medical data, mass data problem becomes a great challenge to computing

hardware, especially to main memory. When data is larger than memory size, whole data can not be
loaded to main memory at one time, which is usually called mass data problem. The most common
solution of this trouble is to apply auxiliary memory (out-of-core data management). However, without
an encapsulation of out-of-core data management, researchers have to additionally design special data
storage functions. URSF has implemented out-of-core data modules which can be shared by all methods.
Figure 6(b) shows out-of-core storage management. A template class OoCStorage is implemented to
achieve out-of-core storage management, which covers storage buffer management and data exchange
between main memory and hard disk. OoCVolume contains a variable of OoCStorage to manage out-of-
core data, which makes a flexible structure. With such structure OoCVolume becomes basic out-of-core
data class. Other classes can gain out-of-core function by containing a variable of OoCVolume.

3.4.3. GPU scheme and SIMD technique
Current parallel framework only supports CPU thread, doesn’t support GPU thread yet. Although

not integrated in acceleration framework, GPU schemes are widely applied in URSF. For instance,
back projection step of CT reconstruction has been accelerated by GPU parallelization in BackProjec-
tionUsingGPU class. The mapping between a projection view and a slice of 3D volume is a projection
transform [40], which is similar to projective texture mapping in computer graphics [34]. Therefore,
BackProjectionUsingGPU is implemented by using texture mapping on GPU [45]. With this back pro-
jection class, developers even new to GPU programming can implement efficient FBP-type methods with
great ease. Meanwhile, CPU SIMD technique has also been applied to back projection. SIMD technique
is the ability to perform same operation on multiple data simultaneously. Better performance can be
achieved using this data level parallelism, since less cycles are used with the same amount of data [49]. In
FBFBPReconCFCPU and CBFDKReconCFCPU, instructions in back projection such as interpolation,
weighting, and accumulation are all implemented with SIMD.What’s more, GPU scheme has also been
applied to ultrasound methods. In 3DUSPixelBasedGPU both BFS and HFS are accelerated by GPU
threads. Due to powerful parallel computing capability of GPU, GPU based methods are much faster
than normal CPU methods.

4. Experiment examples

We have testified this framework by performing some experiments of CT and 3DUS. The following
experiments show URSF’s great power of comparing differentmethods. These experiments are per-
formed on a Windows-PC, with an Intel Core2 2.66 GHz CPU (bus speed is 266 MHz), a 2GByte DDR2
memory, and a NVIDIA GTX 275 GPU card [18].

4.1. Comparison of different circular fan-beam CT algorithms

Figure 7 shows a comparison of different circular fan-beam 2D CT reconstruction. There are three
methods for equal-spaced detector in URSF: FBFBPReconCFGPU (FBP method accelerated by GPU),
FBFBPReconCFCPU (FBP method accelerated by SIMD technique), FBFBPReconCF (FBP method
based on single CPU thread). The performances of these methods are tested on a 2D Shepp-Logan phan-
tom. Sinogram is calculated from 2D Shepp-Logan phantom analytically with parameters: maximum
value of phantom pixel (2.000), minimum value of phantom pixel (0.000), detector element number
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Table 2
Performance comparison of different circular fan-beam 2D CT reconstruction
methods

FBFBPReconCFGPU FBFBPReconCFCPU FBFBPReconCF
time 0.624s 1.326s 4.960s
MSE 0.007 0.008 0.007

Fig. 7. CT reconstruction results on a 2D Shepp-Logan phantom. (a) Original 2D phantom. (b) Image reconstructed by
FBFBPReconCFGPU. (c) Image reconstructed by FBFBPReconCFCPU. (d) Image reconstructed by FBFBPReconCF.

Fig. 8. CT reconstruction results on a 3D Shepp-Logan phantom. (a) A slice of original phantom. (b) The same slice recon-
structed by CBFDKReconCFGPU. (c) The same slice reconstructed by CBFDKReconCFCPU. (d) The same slice reconstructed
by CBFDKReconCF. (e) The same slice reconstructed by CBTFDKReconCF.

(672), number of projection angle (720) and data type (32-bit floating point). All these methods are
applied to reconstruct 512× 512 image from sinogram. Fig. 7(a) shows original 2D phantom. Fig. 7(b-d)
show reconstruction results by the three methods. Table 2 shows reconstruction time (time of reading
sinogram from disk and storing result to disk are not included) and Mean Squared Errors (MSEs) between
original phantom and three results. We can see that GPU method is faster than CPU methods. Moreover,
errors between reconstruction images and original phantomare very small.

4.2. Comparison of different circular cone-beam CT algorithms

Figure 8 shows a comparison of different circular cone-beam3D CT reconstruction. There are
four approximate reconstruction methods for flat-panel detector in URSF: CBFDKReconCFGPU (FDK
method accelerated by GPU), CBFDKReconCFCPU (FDK method accelerated by CPU SIMD tech-
nique), CBFDKReconCF (FDK method based on single CPU thread),CBTFDKReconCF (TFDK method
based on single CPU thread). The performances of these methods are tested on a 3D Shepp-Logan phan-
tom. Amount of projection data is about 400 Mbyte with 360 views. All these methods are applied to
reconstruct 512 cubed volume. Figure 8(a) shows 194th sliceof original 3D phantom. Figure 8(b-e)
show the same slices reconstructed by above-mentioned fourmethods, which seem nearly the same with
original slice. Table 3 shows reconstruction time and MSEs between results and original 3D phantom. By
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Table 3
Performance comparison of different circular cone-beam 3DCT reconstruction methods

CBFDKReconCFGPU CBFDKReconCFCPU CBFDKReconCF CBTFDKReconCF
time 6.226s 824.625s 1137.203s 1319.205s
MSE 0.006 0.009 0.008 0.012

Fig. 9. A CT reconstruction experiment on a mouse with GPU accelerated FDK method. (a) One project view of the mouse.
(b) One slice of the reconstructed volume. (c) Bone structure by surface rendering.

taking advantage of a great many GPU parallel cores, CBFDKReconCFGPU behaves more powerfully
than other three methods. Although there are some errors between reconstruction volumes and original
3D phantom, results are acceptable.

4.3. CT reconstruction on mass data

Figure 9 shows reconstruction result of a anesthetized mouse. The mouse is scanned by our own
Micro-CT system [54] with a circular scanning locus. The number of projection views is 500 with each
projection size of 2240× 2344. Total size of projection data is about 5Gbyte and 3D volume size is
512× 512× 512. GPU accelerated FDK method is applied to construct the 3D volume. The total time
is only 182.680 seconds which includes reading data from disk and reconstructing 3D volume. In this
experiment out-of-core technique is used because data sizeis larger than size of main memory. In Fig. 9,
(a) shows one projection view; (b) shows one slice of reconstructed 3D volume; and (c) shows bone
structure of the mouse. The bone is extracted and shown by 3-Dimensional Medical Image Processing
and Analyzing system (3DMed) [39,50].

4.4. Freehand 3D ultrasound reconstruction on a foetus phantom

To evaluate ultrasound methods, we acquired 3000 B-scan images from a plastic phantom (hollow)
with our ultrasound system [8]. Each 2D ultrasound image size is 552× 274× 8bits. Then 3D volumes
(374× 281× 274) are obtained from three ultrasound reconstruction methods. Figure 10 shows the
plastic phantom and results by 3DUSPixelBasedGPU, 3DUSPixelBasedMT and 3DUSPixelBasedST.
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Table 4
Performance comparison of different ultrasound methods

3DPixelBasedGPU 3DPixelBasedMT 3DPixelBasedST
time 6.226s 824.625s 1137.203s
MSE 0.069 0.136 0.000

Fig. 10. Freehand ultrasound reconstruction experiment ona plastic phantom. (a) The hollow plastic phantom. (b) Vol-
ume reconstructed by 3DUSPixelBasedGPU. (c) Volume reconstructed by 3DUSPixelBasedMT. (d) Volume reconstructed by
3DUSPixelBasedST.

Fig. 11. Freehand ultrasound reconstruction experiment onin vivo hepatic data set. (a) Some slices of the hepatic data set. (b)
Volume rendering result of reconstructed 3D volume.

Table 4 shows reconstruction time of each method and MSEs between 3DPixelBasedST and other two
methods. Result of 3DPixelBasedST is taken as a standard to testify other two accelerated methods.
3DPixelBasedGPU performs 26.4 times faster than 3DUSPixelBasedST. Meanwhile, the errors between
3DUSPixelBasedST and accelerated methods are very small, and there is no obvious visual difference
in results.

4.5. Freehand 3D ultrasound reconstruction on in vivo data set

Figure 11 shows an ultrasound reconstruction experiment ona hepatic data set. The dataset is 135
B-scan images from anin vivohuman liver (original data is from the Medical Imaging Group, University
of Cambridge [17]). Figure 11(a) shows some slices of the dataset. 3D volume is reconstructed by
3DUSPixelBasedGPU. Figure 11(b) shows volume rendering result of reconstruction volume.
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Table 5
Comparison of URSF with other software framework

Framework 
Criteria  URSF STIR Camino IRT ASPIRE 

Concerned field Nearly all medical 
imaging modalities  

Interactive PET 
reconstruction 

Diffusion-MRI 
Reconstruction 

Tomographic 
reconstruction, 
MR imaging 

Tomographic 
sparse iterative 
reconstruction 

Operating 
system Windows Windows, Linux, 

AIX, Solaris 
Windows, Linux, 

Mac OS X,  Windows Linux, Mac OS X

Programming 
language C/C++ C++ Java Matlab C 

Free or not Free Free Free Free Free 
Source code 

available or not Open interfaces  Open source Open source Open source Open interfaces

Acceleration 
scheme 

Multi-thread, SIMD, 
GPU MIMD No No No 

Mass data 
scheme Out-of-Core technique No No No No 

Real-time 
capability 

support real-time 
processing No No No No 

Post-processing 
support 

segmentation, 
registration, 

visualization, etc. 
No No No No 

File format 
BMP, JPEG, TIFF, 

DICOM, raw format, 
etc. 

GE Advance 
sonogram format, 
ECAT 6/7 format 

Images in Analyze 
format or in raw 

format 

JPEG, raw format 
and other formats 

fld format of AVS 
(Application 
Visualization 

System) 
Developer 
support 

Email, webpage, 
internet forum Email, webpage Email, webpage Email, webpage Email, webpage

Update 
frequency Three times a year Nearly once a 

year 
More than three 

times a year 
About six times a 

year Sporadically 

Documentation 
and manual 

User manual, API and 
software architecture 
documents, internet 

forum pages, examples 

User manual, 
Source code and 

software 
documents 

User manual, 
Source code and 

software 
documents 

Source code and 
remarks End-user manual

5. Discussion

From the standpoint of data flow, reconstruction processes are similar in different modalities. There-
fore, new things in one modality can promote innovation in other modalities. With this work flow idea
and modular structure, URSF provides a powerful tool for both scientists and engineers. The flexible
architecture reduces efforts and time for further development. Meanwhile, new reconstruction methods
and modalities can be integrated to this framework with great ease. The above-mentioned CT and
ultrasound sub-frameworks are very good examples for integration of new modalities. On the other
hand, the platform is user-friendly. It provides standard input and output interfaces, which can exchange
data with conventional image formats, i.e. BMP, JPEG, TIFF,DICOM, raw format, etc. Moreover, this
framework offers a complete solution for some key issues involved with reconstruction such as mass data
problem and time-consuming problem. Out-of-core data management has solved mass data problem
effectively, and moreover, acceleration framework and GPUtechniques have solved time-consuming
problem. What’s more, URSF is an effective platform for method comparison. Researchers can compare
their own methods against existed algorithms. Nowadays, URSF has been applied to lots of engineering
projects, such as fossil scanning software system using industrial CT, our own micro-CT system [54],
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lossless defect detection using industrial CT, surgery programming and navigation for ultrasound guided
tumor ablation [53], etc.

Bohn et al. have proposed a process and criteria for evaluation of software frameworks in the domain of
computer assisted surgery [4]. 63 evaluation criteria havebeen defined to evaluate software frameworks
in that paper. We have chosen some criteria to provide an objective evaluation of our reconstruction
framework and other frameworks. Table 5 shows comparison ofURSF with other four frameworks under
13 criteria. We can see that URSF has lots of advantages not only on many concerned fields, but also on
well designed architecture and quality technical supports.

6. Conclusions and future perspective

This paper discusses inverse problems in medical imaging and analyzes reconstruction from the
viewpoint of work flow. The goal of this project is to develop asoftware framework which covers
reconstruction methods for multi-modal medical imaging. The experimental results above demonstrate
that this framework is well suited to implement and accelerate computationally intensive reconstruction.
Moreover, two sub-frameworks and lots of advanced schemes are presented in detail, which will be
meaningful for other engineers.

Currently, URSF has combined with MITK 2.3.0 version, whichcan be downloaded free of charge
at www.mitk.net. With URSF, MITK becomes a general algorithm platform for medical imaging and
analyzing. Nowadays, MITK has both Windows and Linux versions,but URSF only runs under Windows.
Further extension to other operating systems will be a meaningful work. In addition, integration of more
modalities and more practical algorithms to URSF will be a long-term task.
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