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SUMMARY

Bioluminescence tomography (BLT) is employed to reconstruct internal bioluminescent source to reveal
the molecular and cellular information. However, BLT faces many challenges such as quantitative recon-
struction. In this paper, a reconstruction—oriented multigrid finite element algorithm is proposed to fully
reconstruct the source density. A source permissible region is utilized to raise the numerical stability.
The proposed algorithm transfers diffuse equation into liner relationship between the inner source and
boundary information on a mesh. A tolerant algorithm for linearly constrained optimization algorithm can
solve the box-constrained quadratic optimization problem. By setting a threshold as the average recon-
struction densities, we can refine every possible source element and form next mesh until the reconstructed
densities are accepted. Numerical simulation of homogeneous and heterogeneous phantom demonstrates
the feasibility and potential of the proposed algorithm. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Along with the advancement of genomics and proteomics, molecular imaging, especially small-
animal molecular imaging acts an significant role that can bear comparison with traditional clinical
imaging and microcosmic biological imaging [1]. Because of the high sensitivity, low cost and
operation facility of the photonics-based imaging modalities, bioluminescence tomography (BLT)
[2, 3], fluorescence molecular tomography (FMT) [4] and photoacoustic tomography (PAT) [5]
are new imaging method in vivo that can dynamically and real-timely monitor the molecular
and cellular activities, and hence report the growth and regression of tumor non-invasively. The
principle of BLT and FMT is to retrieve light source information from the light flux detected on
the surface of small animal. While FMT is a nonlinear inverse scattering problem, BLT belongs
to the inverse source problem due to no demand of external light source and has a good signal-
to-noise ratio (SNR). Before BLT experiment, the reporter genes are transfected into main organs
of the small animal. At present, this injection method is used in the in vivo study of immune cell
monitoring and various genetic controls [1]. In Bioluminescence tomography, luciferase enzymes
are used to real-timely observe the tagged tumors in small animals. After it is injected into a living
mouse, those cells in the aimed organism emit photons of light [6].

Bioluminescent photon propagation in biological tissue is governed by the radiative transfer
equation (RTE) [3]. However, the RTE is expensive in computation in the practical small-animal
environment. In contrast with absorption, scattering is the primary manner in the living animal,
hence the diffusion equation is a relatively accurate approximation and has been widely adopted
to describe photon propagation when the biological tissue has characteristic of high scattering
optical property [7]. Based on diffusion approximation, the uniqueness theorem asserts that BLT
reconstruction result is not unique [2]. In view of the ill-poseded characteristic of BLT, we can get
some solutions that can match the boundary measurements. The uniqueness research on BLT shows
that a priori knowledge can attribute to source reconstruction, such as the anatomical information
and the background optical properties. Up to now, most BLT groups in the world get the optical
properties of the main anatomical tissues from the literature [6, 8, 9], which cannot be very accurate
in practice because of the diversity of individuals. On the other hand, three-dimensional BLT
reconstruction is a high ill-posed inverse problem and it is difficult to fully reconstruct the source
density information [10].

In this paper, we set up a source permissible region to reduce the dimensions and complexity
of reconstruction. To reconstruct BLT light sources density, we propose reconstruction-oriented
multigrid finite element algorithm (ROMFE) to raise the reconstruction accuracy of source density.
A tolerant algorithm for linearly constrained optimization algorithm can iteratively solve this kind
of least-squares problem. Let a threshold be the average reconstruction density of the former
mesh, we can refine every possible source element and generate the finer mesh until the iterative
reconstruction process receives the desired results. To avoid the inverse crime [11], the forward
solver cannot be relevant to the inverse one. Molecular optical simulation environment (MOSE)
[12] is utilized to generate the forward data, which is researched and developed based on statistical
modeling and can depict bioluminescent photon transport in the biological tissue. Several numerical
simulations of sources reconstructions show the feasibility and merits of the proposed reconstruc-
tion algorithm. In addition, we validate the importance of accurate spatial distribution of optical
properties.
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2. ALGORITHMS

2.1. Diffusion approximation and boundary condition

The tissues of small animal are turbid media in which photons are highly scattered and absorbed.
Transport equation is regarded as an accurate mathematical model for transportation of photons in
the body of small animals [3]. However, the RTE is difficult to be solved and highly computational.
In practical environment, the influence of photon scattering is more important than that of photon
absorption, hence we can utilize diffusion approximation to simulate the light transportation. In
BLT, the measured optical signal is assumed to be continuously emitted by internal bioluminescent
sources, so the propagation of light can be described by the steady-state diffusion equation and
Robin boundary condition [6, 8] as below:

—V-(DX)VO(X))+p, ) P(x) = S(x) (x€Q) (la)
O(x)+2Ax; n,n)DX)(v(X)-VOX)) =0 (x€0Q) (1b)

where Q and 0Q are the tissue region and boundary correspondingly; ®(x) represents the photon
flux density distribution; S(x) denotes source energy density distribution; D(x)=1/[3(u,(x)+
(1—g)u,(x))1 is the diffusion coefficient; p,(x) is the absorption coefficient, while pg(x) is the
scattering coefficient; and g is anisotropic parameter; v is the unit outer normal to dQ at location
x;A=(1+R)/(1—R), in which R depends on the refraction properties of the medium and can
be approximated by R~ —1.4399n~240.7099n ! +0.66814-0.0636n [13].

In bioluminescent tomography, the outgoing flux density Q(x) can be measured by a highly
sensitive CCD camera:

D(x)
Qx)=—DX)(v-VO(x)) = YA (x€0Q) 2

Thus, BLT problem is defined as: reconstructing three-dimensional image information S(x)

from boundary measurement Q(x) on the surface by Equations (1)—(2).

2.2. Reconstruction-oriented multigrid finite element algorithm

On the basis of finite element method [14, 15], the below weak form of steady-state diffusion can
be detailed as follows:

/Q (DE)(VO(x)) - (VY (X)) + 1, x)P(x) ¥ (x)) dV

+ / ;(I)(X)‘P(X)dA: / SX)YPx)AV, VY¥P(x)eH'(Q) 3)
0 2A(X;n,n) Q

From coarseness to fineness, Let {V, ..., Vg, ...} be tetrahedron mesh on the domain Q. Taking
mesh Vj as an example, the left integrals of (3) can be written as the matrix multiplication of M k
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and @, where ®* represents the vector of the photon flux density on the mesh V; and M* is a
symmetric, positive-definite and sparse matrix.
The right integrals are treated as follows: take any tetrahedron /¥ as example:

i 4

tﬁkS@YP@)dV=[Tk W W WL IWE W W wET st 4)

where S{‘ represents the ith reconstruction element on Vj; ‘I’fl , ‘I’fz, ‘I’fy ‘I’Z are the nodal variables

of the element I¥; Wl.’i , Wl.’; , Wilg , Wl.k are the basis function of the element /¥, which can describe the
spatial distribution and shape of the tetrahedron and can raise the source densities in reconstruction
process.

And then we can form the linear equation between the source energy densities and the photon
flux densities on the whole mesh Vj

M*OF = Fksk 5)

By deleting internal photon flux variables and source variables in source impermissible region,
we can build the linear relationship between the unknown inner source and the photon flux density
on the boundary on mesh Vi

k gk k gk
Mmod(Dbound =F modSpr (6)
Hence, BLT problem can be described as a box-constrained quadratic optimization problem.
) mlP u {”Mrl;lodq)ltc)ound - Frflodsgr”/\ +ié(s§r)} (7
SlowgsPr<s?

where S}("W and S,fp are the low and up bounds of the source density; A is the weight matrix,
IVIix=VTAV; . is the regularization parameter; ¢ is the penalty function. A tolerant algorithm
for linearly constrained optimization can iteratively solve (7) perfectly [16].

A threshold S}{hres can be set as the average reconstruction densities on V. We divide every
possible source element greater than S}(hfes into eight son-tetrahedra and close the triangulation
[17] and form next mesh Vi1 until the iterative reconstruction process receives the desired results.
By using reconstruction-oriented multigrid algorithm, we can fully reconstruct the source density
and reduce the ill-posedness of BLT.

2.3. Incorporation of a priori information

In the complex biological tissues, bioluminescent source generates photons that are highly scat-
tered and absorbed in the body, which results in the difficulty of source quantification. Hence,
bioluminescent source reconstruction problem is severely ill-posed. The theoretical uniqueness
proof [2] tells that we cannot get unique reconstruction source in BLT if we do not incorporate
some practical a priori information.

In this paper, we make a practical assumption on the distribution of real source that is divided
into a source permissible region and a source impermissible region to enhance the computational
efficiency and reconstruction stability and alleviate the ill-posedness of BLT. In Equation (5), the
vector S¥ stands for the source distribution on the whole mesh V. On the assumption, we can
divide S¥ into two sub vectors: Sl’;r and S . which describes the distribution in source permissible

upr’
region and that in source impermissible region correspondingly. Obviously, Sl’jpr is zero vector
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on assumption. By deleting internal photon flux variables and source energy density on source
impermissible region, accompanied by matrix transformation of M* and F¥, we can formulate
the linear equation between the unknown inner source information and the photon flux density
information on the boundary, which is shown in Equation (6).

On the other hand, by virtue of the characteristic of high ill-posedness of BLT, it is very
important to evaluate background optical parameters accurately, which is used as essential a priori
information for accurate BLT reconstruction. Currently, most BLT research groups acquire the
optical properties of the main anatomical organs from the references that cannot be accurate
actually. In homogeneous phantom, we use the optical parameters of 50% errors to show the
importance of accurate background optical parameters in reconstruction.

3. EXPERIMENTAL RESULTS

3.1. Homogeneous experiment

To evaluate the proposed algorithm, two numerical simulations are carried out. In the first simula-
tion, we use a homogeneous phantom. In Figure 1, the bioluminescent source of radius 1 mm and
total power 1 W is centered in the spherical lung tissue, whose radius ranges from 1 to 10 mm.

We contrast forward solutions of the proposed algorithm and analytic formula as shown in
Figure 2. In BLT field, the analytic formula is first used by BLT lab in Virginia Polytechnic Institute
and State University [18]. The absorption coefficient ,ua=0.12mm*1, the scattering coefficient
us=20 mm™!, the anisotropy parameter g=0.9. The forward solution of the proposed algorithm
meets with analytic solution generally in Figure 2.

Table I compares the forward solutions of ROMFE and analytic formula and shows ROMFE
errors Err: Err=|ana — DBromfel/2. From Table I, we can see ,ua=0.12mm_1, ,uS=20mm_1, g=
0.9 agree with analytic formula. The relevant errors are mostly under 10%.

We compare ROMFE reconstruction with accurate optical coefficients to that with inaccurate
coefficients as shown in Figure 3. The background absorption coefficient p, =0.35 mm™!, the
scattering coefficient p, =23 mm™!, anisotropic parameter g =0.94. In Figure 3(a), the background

(a) — —

Figure 1. Homogeneous phantom: (a) lung tissue comprising a spherical source at its center and (b) the
finite element mesh of homogeneous phantom.
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Solution by ROMFE vs. by analytic formula
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Figure 2. The comparison of forward solutions by ROMFE and by analytic formula.

Table I. ROMFE and analytic formula’s comparison of surface flux and relevant errors.

Radius (mm) ROMFE (W) Analytic (W) Error (%)
1 1 1 0.00
2 0.76 0.835 8.97
3 0.48 0.523 8.18
4 0.264 0.291 9.33
5 0.139 0.152 8.21
6 0.069 0.076 8.99
7 0.033 0.037 11.64
8 0.016 0.0177 8.97
9 0.0077 0.008 6.92
10 3.64E—-03 3.84E—-03 5.43
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Figure 3. A comparison of ROMFE reconstruction of homogeneous phantom: (a) a cross section with
coefficient errors and (b) a cross section with accurate coefficients.
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optical coefficients have 50% errors and the maximal reconstruct density is 0.02nW/mm?>. While
in Figure 3(b) with accurate optical coefficients, the maximal reconstruct density is 0.148 n\W/mm?
that approximates the real density. The total reconstruction energy is near to the real total energy
1 W, which can approve the validation of ROMFE and the importance of background optical
parameters as a priori information.

Table 11 lists the average source density, total power and position information of the reconstructed
and real source. The average source density of ROMFE is 0.133nW/mm?> and the total power
error is about 10.986%. And the source position error is about 0.007 mm. From the comparison
of reconstructed results and real source information, we can validate the proposed algorithm.

3.2. Heterogeneous experiment

In the second experiment, we utilize a heterogeneous phantom [19], which is a cylinder. It is 30 mm
high with a radius of 10 mm. In the cylinder, there are four ellipsoids and one cylinder denotes left
lung, right lung, heart, bone and liver, as illustrated in Figure 4(a). The bioluminescence spherical
source is located at (—3, 5, 15) in the right lung and the real total power is 1 nW.

MOSE (www.mosetm.net) is a forward model for bioluminescence light propagation based on
statistical method. The intrinsic characteristic of MOSE is that Poisson noise is well integrated
into the model that can depict the noise of surface flux.

In the forward simulation of MOSE, a spherical source with a radius of 1 mm and a power
density of 0.238nW/mm?> was utilized at the location of (—3,5, 15). The numbers of photons is
1.0 x 10%. The forward mesh has 17 800 nodes and 86 123 tetrahedrons. On the other hand, the
reconstruction initial mesh has 1537 nodes and 6878 tetrahedrons, which is completely different
from the mesh used in MOSE. Thus, we can avoid the inverse crime effectively. The flux density
on the boundary is computed by forward results generated by MOSE according to the principle
of shortest distance. We let the domain {(x,y,z)|13<z<17,x<0, (x,y, z) €right lung} be the
permissible source region. Optical parameters are listed in Table III.

We run two reconstruction simulations in contrast. One is the source reconstruction of ROMFE.
The other is the source reconstruction of standard multigrid finite element (MFE) method [20].
MFE uses a series of mesh (from coarseness to fineness) to form a series of corresponding linear
equation. By using the prolongation operator, MFE can transfer between the equations. After
one mesh refinement on the possible source elements, the final reconstructed results of MFE and
ROMEFE are as shown in Figure 4(c) and (d).

These two simulations are executed on the same personal computer (Intel Pentium4, CPU
3.20 GHz, memory 1G). And the same initial mesh is used (mesh node: 1537 and mesh elements:
6878). The same MOSE forward solutions are matched. Before refinement, all conditions of these
simulations are the same.

After one refinement, the number of mesh nodes of ROMFE is 1567 and that of elements
is 7043, which can reduce the reconstruction dimension and raise the reconstruction stability in

Table II. The comparison of reconstructed results and real source in homogeneous phantom.

Average density (nW/rnm3) Total power (W) Source position (mm)
Real source 0.148 0.620 0, 0, 0)
Reconstructed source 0.133 0.559 (—0.0036, 0.0037, —0.0049)
Copyright © 2008 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2008)
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Figure 4. Heterogeneous phantom: (a) a real source in right lung; (b) the discretized mesh of ROMFE
and MFE reconstruction; (c) reconstruction results of MFE; and (d) reconstruction results of ROMFE.

Table III. The optical parameters of the heterogeneous phantom.

Material Muscle Lung Heart Bone Liver
Ha (mm™!) 0.01 0.35 0.2 0.002 0.035
pig(mm~ 1) 4 23 16 20 6

g 0.9 0.94 0.85 0.9 0.9

comparison with MFE. The run time include the time of refinement, the matching of forward
solution between MOSE and reconstruction algorithm, optimization algorithm, the generation of
Mllfwd and Frlrclod’ the inversion of (Mllfwd)_lFr’;Od and display of three-dimensional image. The run
time of ROMFE is 6 min, which is quicker than that of 20 min of MFE.

In Table IV,

[real source density —maximal reconstruction density|

maximal density error= :
[real source density|
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Table IV. The comparison of reconstructed results of MFE and ROMFE in heterogeneous phantom.

Maximal source Average source Total
density (nW/mm3) density (nW/mm3) energy (W) Finite mesh Run time (min)

Real source 0.238 0.238 1

MEFE source 0.219 0.139 0.583 2156 nodes, 20
10405 elements

ROMEFE source 0.248 0.201 0.843 1567 nodes, 6

7043 elements

And the total energy error is defined in the same manner. We can see that the maximal source
density of ROMFE is 0.248n'W/mm?, which is near to the real source density and the maximal
density error is 4.2%, which is better than that of MFE. The reconstructed total source power of
ROMEFE is 0.843 nW/mm3 and the relevant error is 15.7%, which is also better than that of MFE.
In contrast with MFE, we can get better reconstruction effects using ROMFE.

4. CONCLUSION

We have forwarded a novel reconstruction-oriented MFE algorithm, the feasibility and potential of
which are demonstrated numerically. Taking source permissible region as a priori information can
accurately reconstruct source distribution and density. Statistical method that generates forward
data for reconstruction can avoid the inverse crime. Our future work is to validate the proposed
algorithm using BLT system and real experiment.
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