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Abstract

Acupoint specificity is one of the central issues of functional magnetic resonance imaging (fMRI) studies of acupuncture and has been
under discussed. However, strong and consistent proof has not been provided for the existence of acupoint specificity, and unsuitable
analysis approach applied could be the reason. We observed that previous researches of acupoint specificity were mostly based on model-
based methods which were limited to make exploration of acupoint specificity because of the inaccurate specified prior. Here we applied
multi-voxel pattern analysis (MVPA) to investigate the specificity of brain activation patterns induced by acupuncture stimulations at a
vision-related acupoint (GB37) and a nearby nonacupoint (NAP). Results showed that multiple brain areas could differentiate the central
neural response patterns induced by acupuncture stimulation at these two sites with higher accuracy above the chance level. These regions
included occipital cortex, limbic-cerebellar areas and somatosensory cortex. Our results support that the characteristic neural response
patterns of brain cortex to the acupuncture stimulation at GB37 and a nearby NAP could differ from each other effectively with the

application of MVPA approach.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

As a therapeutic measure, acupuncture is efficacious for
various human disorders reported in clinical practice.
According to the classical literatures of the traditional
Chinese medicine, acupuncture actions embody a salient
feature that acupuncture manipulation at certain points elicits
specific effects over target organ systems which can be
remote from the needling sites. However, the acupoint
specificity is still a controversial research topic. In order to
prove the existence of acupoint specificity, previous
researches have focused on the relationship between
acupuncture needle stimulations at vision-related acupoints
and their corresponding cortical activation patterns. A
seminal study has reported that acupuncture manipulation
at vision-related acupoints induced specific fMRI signal
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changes in the occipital cortex, which did not exist in sham
group [1]. A group of following studies focused on the
specificity of vision-related acupoints likewise [2—4]. One of
them argued that acupuncture stimulation at a vision-related
acupuncture point (GB37) did not directly produce activa-
tion in the visual cortex and associated areas [5]. But lately,
another research, aiming to compare brain activation changes
in the occipital lobe by stimulating two vision-related
Traditional Chinese Medicine (TCM) acupoints and a
nonacupoint (NAP), observed that the acupuncture stimula-
tion at both vision-related acupoints and the NAP produced
similar widespread fMRI signal deactivations [6]. This result
did not support the specificity of vision-related acupoints.
Previous fMRI activation studies, which were based on a
block paradigm design, mostly applied general linear model
(GLM) approach to detect acupuncture effects according to a
presumable temporal pattern of brain activation induced by
acupuncture administration [7-9]. GLM approach is well
suited for testing whether variability in a voxel’s time course
can be explained by a set of predefined regressors that model
predicted responses to stimulus (such as acupuncture).
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However, this model-dependent approach is not valid in
cases when limited or no prior temporal information is
available, for example, it does not work efficiently testing the
acute effects of a new drug or food intake on the brain [10].
According to the theory of TCM, acupuncture induces long
lasting post-manipulation effects [11]. This fact brings about
that the actual temporal information for acupuncture-induced
changes in brain remains unclear. Therefore, GLM approach
is not optimal for the study of acupuncture effects when the
precise timing and duration of physiological events cannot
be specified a prior. And the statistical inferences derived
from GLM estimates are limited. Other approaches which
are free of any statistical inferences on the temporal profile of
the neutral responses to acupuncture stimulation should be
introduced to explore the central neutral response. Recently,
multivoxel pattern analysis (MVPA) has drew much
attention as an alternative approach to classical analysis
methods of functional mapping [12—14]. MVPA, with data-
driven nature, are free of any hypothesis on the temporal
profile of the event, and could be more appropriate to
investigate the subtle differences between acupuncture
performed at different points.

In this study, we applied MVPA to analyze the difference
of neutral response patterns induced by acupuncture
stimulation at GB37 and one of its nearby NAP. We
hypothesized that neuroimaging findings derived from
MVPA could identify subtle differences of neural responses
following acupuncture stimulation at a vision-related
acupoint and a prefixed NAP.

2. Materials and methods

2.1. Subjects

Twenty-two Chinese healthy college students gave their
written consents and participated in the present study
(11 males and 11 females, ages of 21.4+1.8, right-handed).
The protocol was approved by the West China Hospital
Subcommittee on Human studies and conducted in accor-
dance with the Declaration of Helsinki. None of the
participants have previous acupuncture experience or had
been exposed to a high magnetic field.

2.2. Acupuncture experiment procedures

Subjects were divided into two groups in a semirando-
mized order: of them 11 subjects received acupuncture
stimulation performed at GB 37 on the mid-shin which is
widely used as treatment for vision-related disorders [15]
(a manual acupuncture condition, ACUP group) and the
other 11 subjects received sham stimulation at a NAP, a
nonmeridian-point (a sham acupuncture condition,
SHAM group).

In each ACUP run or SHAM run, the participant
underwent a conventional block of acupuncture stimulation
at GB 37 or nearby NAP. The experimental paradigm used

during the fMRI scan was an ON/OFF block design. Each
block run consisted of a baseline scanning of 1 min at the
beginning, two stimulation epochs of 30 s which were
separated by an interval period of 50 s and followed by a
resting period of 50 s.

2.3. fMRI scanning procedure

Subjects were scanned in a 3.0-T Signa (Siemens) MR
whole body Scanner. A foam pillow and a band (across the
forehead) were used to restrict head movement. Functional
images were collected in a sagittal orientation parallel to the
AC-PC plane with 5 mm slice thickness (no gaps) using a
single shot gradient-recalled echo planar imaging (EPI)
sequence. The EPI pulse sequence had the following
parameters: TE=30 ms, TR=2000 ms, flip angle=90°; matrix
size=64x64, field of view 240x240 mm?, giving an in-plane
resolution=3.75%3.75 mm. The scan covered the entire brain
including the cerebellum and brainstem.

At the end of each ACUP or SHAM run, the participant
was questioned about deqi sensations (i.e., sensations of
aching, tingling, fullness, cool, warm, sharp pain and dull
pain). The sensation rates from 0 to 10 (O=no sensation, 1—
3=mild, 4—6=moderate, 7—-8=strong, 9=severe and 10=un-
bearable sensation).

2.4. fMRI data analysis

2.4.1. Preprocessing

For each subject, 110 functional volumes (totally 220 s)
were acquired in each run and the first 5 volumes of each run
were removed to eliminate nonequilibrium effects of
magnetization. Data preprocess were done with SPMS5
(Wellcome Department of Imaging Neuroscience, London,
UK). All scans were realigned to remove residential motion
effects, spatial normalized on the MNI space, and then
resample at 3x3x3 mm. No spatial smoothing was applied
because this conventional preprocessing step may remove
fine-grained spatial information which could be useful for
pattern recognition analysis of MVPA.

2.4.2. Multi-voxel pattern analysis

The preprocessed fMRI data were used to form an basic
MVPA research which is a straightforward application of
pattern classification techniques [12]. The performance of
pattern recognition application typically depends a great
deal on the step of feature selection which determines the
number and quality of the variables (i.e., features) that are
given to the classifier. So an efficient feature selection step
needs to be able to abstract a subset or composite set of
features which contains enough information to perform the
classification but not so many to degrade -classifier
performance. In this study, a novel variant of the
“searchlight” approach [16] was applied to select an
appropriate set of voxels in order to define multivariate
features as the input of pattern classification analysis. We
defined a spherical multivariate “searchlight” centered on
each voxel in turn to combine the signals from all voxels
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falling into it, and this “searchlight” was moved through
the whole brain cortex. Therefore this multivariate feature
selection method can evaluate sets of voxels based on the
informativeness of blood oxygenation level dependent
(BOLD) signal changes over those voxels [12]. The
classification performance of each voxel shows how well
the multivariate signal in the local spherical neighborhood
differentiated the experimental conditions.

In detail, we first defined a small spherical cluster with 6-
mm radius which comprised 33 voxels (according to the
“searchlight” with optimal or near-optimal detection perfor-
mance [16]) of 3-mm width in each dimension for a given
voxel v;. We extracted the unsmoothed preprocessed fMRI
data for each voxel in the fixed local cluster to yield a feature
vector for this central voxel v; and a single feature in it was
defined by x; which was the signal of a voxel j at a given
time point 7. Therefore, we acquired a data matrix X=7x}
where T was the number of time points of each run and
was the number of the voxels in this spherical cluster. We
then applied singular value decomposition (SVD) as a
dimension reduction device to reduce the raw data matrix to
its eigenvectors and only the major singular vector which
spanned the greatest variance seen in the data was chosen to
define the final feature vector for each run of each subject (a
description of SVD can be found in Appendix A).

Previous machine learning related studies have developed
an enormous range of classification algorithms that can be
applied in MVPA studies [17]. Here, the classification was
performed with the support vector machines (SVM). SVM is
based on the statistical learning theory [18] and has been
acknowledged as a powerful tool for statistical pattern
recognition [19]. A brief summary of its essential concepts
can be found in Appendix B. SVMs have been successfully
used in multiple MVPA fMRI studies and, especially, have
much better performance when large numbers of dimensions
were used [20]. The classification was performed with the
LIBSVM implementation (http://www.csie.ntu.edu.tw/
wcjlin/libsvm). The SVM classifier is trained by providing
examples of the form <x,)> where x represents a spatial
pattern, here in our case is the final feature vector of each
subject, and y is the class label (=1 for ACUP group and
y=—1 for SHAM-group). We evaluated the performance of
the classifier using the leave-one-subject-out cross validation
test. The proposed approach here had K-folds where K
(equals 22) is the number of all the subjects involved. For
each fold, we assigned the features of the K-1 subjects
obtained from the “searchlight” centered on voxel v; to a
“training” data set that was used to train this linear classifier.
And then, the class label of the central voxel v; belonged to
the other subject (“test” data) was predicted by classifying its
feature vector using the trained classifier. In total, the
training and test procedures were repeated 22 times, each
with feature vectors of N-1 different runs/subjects assigned
as training data set and feature vector of one different run/
subject assigned as test data set. The classifier accuracy was
measured by the proportion of runs correctly classified for

central voxel v;. Therefore, average classifier accuracy was
yielded for v; by averaging all the accuracies achieved for
every fold of this K-fold cross-validation procedure. Then,
the same procedure was repeated for the next spatial position
at v;, and the classifier accuracy for each voxel was then used
to create a three-dimensional spatial map of classifier
accuracy for each position v; to illustrate the discriminating
areas in the whole brain cortex.

2.4.3. GLM-based analysis

Besides MVPA, we have performed fMRI data analysis
with the application of voxel-wise GLM approach to both
groups. The statistical analysis was performed subsequently
at both individual level and group level using the same
preprocessed fMRI data set which had been analyzed with
MVPA. In the individual analysis, one t-contrast was defined
as stimulation phase minus resting phase in both two groups.
Each of the resulting statistical maps indicated the voxel-
wise signal changes for a particular stimulation condition
relative to the baseline of resting. These maps from each
subject of these two groups were then used to calculate two-
sample 7 test in SPMS. Statistical analysis was done with a
threshold at P<.005 (uncorrected).

3. Results
3.1. Psychophysical responses

The prevalence of these deqi sensations reported by all the
subjects was expressed as the percentage of individuals in the
group that reported the given sensations (Fig. 1A). A
statistical analysis found no difference between the ACUP
group and SHAM group in regard to the prevalence of these
sensations (paired ¢ test, P>.05). However, differences did
exist in terms of several types of sensations. Aching (ACUP
group: 58% of subjects; SHAM group: 33%), fullness
(ACUP group: 58%; SHAM group: 42%), and Dull pain
(ACUP group: 17%; SHAM group: 0) was found greater
for ACUP group. Tingling (ACUP group: 33%; SHAM
group: 50%) was found greater for SHAM group. The
intensity of sensations was expressed as the averaged
scorexS.E. (Fig. 1B). The levels of sensations were kept
low (mild to moderate), and no significant differences
occurred in the average sensation intensity between the
ACUP group and SHAM group. There was also no
significant difference in the MASS indexes (a weighted
average of all sensations using an exponential smoothing)
between these two conditions (paired 7 test, P>.05) [21].

3.2. Discriminating results of MVPA

We trained and tested the classifier to distinguish the
patterns of neural responses elicited by acupuncture
stimulations performed at one vision-related acupoint and
one NAP. Table 1 summarized the brain areas with
significant discriminating accuracies higher than the
threshold of discriminating level (65%, higher than the
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Fig. 1. Results of psychophysical analysis. (A) A percentage of subjects who reported having experienced the given sensation. Sensations of aching, fullness, and
dull pain were found more prevalent for ACUP group. Tingling was found more prevalent for SHAM group. (B) The intensity of the reported sensations
measured by an averaged score (with standard error bars) on a scale from 0 denoting no sensation to 10 denoting an unbearable sensation. Sensations of fullness,
cool and dull pain were found greater for ACUP group. Sharp pain was found greatest for SHAM group.

chance level 50% which has been applied as the threshold
of classification accuracy in previous studies [22-23]).
Spatial maps with classifier accuracies were shown in
Fig. 2. Subregions of vision-related cortex showed strong
discriminating ability to distinguish the neural response
patterns elicited by acupuncture stimulations performed at
different sites, including inferior occipital gyrus (I0G),
bilateral lingual gyrus (LG) (Fig. 2A and B), middle
occipital gyrus (MOG) and fusiform gyrus (FG). The
resulting discriminating map also displayed high accuracies
in some major structures of limbic-cerebellar system,
including the insula (C), rostral anterior cingulate cortex

(rACC) (D) and perigenual anterior cingulate cortex
(pACC) (E), pons (F) amygdala (G) and culmem in anterior
lobe (H) and declive of vermis (I) in posterior lobe of
cerebellum. In addition, small region of somatosensory
cortex (secondary somatosensory cortex, SII) (J) was also
identified with high discriminating accuracies.

3.3. Results of two-sample t test based on GLM approach

Group analysis averaged across all subjects and sessions
identified no region where fMRI signals increased above
threshold when calculating the contrast of acupuncture

Table 1
Significant discriminating accuracies derived from pattern classification between ACUP and SHAM (with 0.65 as threshold of discriminating accuracy)
Talairach DA n Talairach DA N
X y z X v z
Limbic system 0.72 Sensorimotor
Amygdala R 21 =7 -15 0.86 5 SIT L
PH/Hipp L -18 —47 =5 0.77 30 R 65 -20 15 0.82 5
R 24 —47 =10 14 Occipital cortex
dACC L 0.82 Cuneus L -3 —67 9 0.91 53
BA 24/32 R 6 33 18 0.77 10 BAL17 R 21 —83 37 0.82 49
pACC L -6 32 -4 0.95 21 I0G/LG L -6 —64 3 0.82 17
BA24/32 R 6 38 -2 0.95 54 BAIS R 21 -97 -8 0.86 46
MCC/PCC L -6 —42 33 0.82 47 MOG/FG L —24 -89 21 0.82 36
BA 32/23 R 9 —45 38 0.82 38 BAI19 R 27 —94 —-13 0.82 26
Insula L —48 —34 18 0.82 15 Cerebellum
BA13 R 42 —43 19 0.82 9 Culmen L 0 =59 -7 0.91 124
Brainstem R 24 —42 -16 0.95 153
Pons L —-18 -33 =29 0.95 63 Declive L -6 —56 —-12 0.86 50
R 6 =27 -21 0.82 36 R 42 —68 -22 0.95 101

BA, brodmann area; PH, parahippocampus; Hipp, hippocampus; dACC, dorsal cingulate cortex; MCC, middle cingulate cortex; PCC, posterior cingulate cortex;
SII, secondary somatosensory cortex; DA, discriminating accuracy; N, the number of voxels identified.
The discriminating accuracies showed in this table were the highest value among all the N voxels identified (with accuracy higher than 0.65) for the specific

brain areas.
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Fig. 2. Resulting spatial maps with accuracies for discriminating neural response patterns between real acupuncture stimuli at GB37 and the sham acupuncture.
(A and B) Lingual gyrus. C, left insula; D, rostral anterior cingulate cortex; E, perigenual anterior cingulate cortex; F, pons; G, amygdala; H, culmen in the
anterior lobe of cerebellum. I, declive of vermis in posterior lobe of cerebellum. J, secondary somatosensory cortex.

greater than baseline in the occipital lobe. And response
patterns of brain cortex were similar for ACUP and NAP.
The results of two-sample ¢ test were summarized in the
Table 2. It shows activations existing in small areas of
inferior occipital gyrus and lingual gyrus in the occipital
lobe. This indicates that occipital lobe deactivation patterns

between these two points do not significantly differ in spite
of minor differences in fMRI signal change. Besides, a few
of brain areas showed activations in the result of two-sample
t test which indicated stronger averaged neutral responses to
acupuncture stimulation of ACUP group compared with
SHAM-group, including some major structures of limbic-

Table 2
Significant changes in signal intensity derived from ACUP group versus SHAM group (two-sample 7 test, 7=2.85, P<.005, uncorrected)
Talairach t N Talairach t N
X y z X v z
Limbic system Temporal cortex
PH L BA 37/39 L =36 —60 28 3.27 3
BA 30/36 R 30 -38 -8 3.76 6 R 45 —67 9 3.24 3
MCC/PCC L Parietal cortex
BA 24 R 12 =10 39 3.14 5 IPC/precuneus L —48 -28 24 4.11 9
Insula L —45 —34 21 3.41 3 R 42 —45 38 3.64 5
BAI13 R 42 0 -5 4.75 4 Occipital cortex
Subcortical Cuneus L -3 =77 29 3.30 5
Thalamus L -12 =26 1 3.52 4 BAI18 R
R 15 -20 15 3.61 3 I0G/LG L =36 =79 —4 3.26 4
Brainstem BA19 R
Pons L -15 27 —21 3.33 2 Cerebellum
R 9 -22 —24 3.09 2 Culmen L -6 —47 2 3.38 9
Sensorimotor R 36 —45 —20 3.37 10
ST L —48 =27 40 3.84 8 Declive L =27 -59 -15 3.82 17
R R
SMA L
BA 6 R 3 -3 53 3.10 3

SI, primary somatosensory cortex; SMA, supplementary motor area; IPC, inferior parietal cortex.
The ¢ values showed in this table were the highest 7 value among all the N voxels identified and considered significant at P<.005 for the specific brain areas.
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cerebellar system and small regions of primary somatosen-
sory cortex and supplementary motor area.

4. Discussion

We applied MVPA to explore the acupoint specificity by
identifying the subtle difference in the neural response
patterns induced by acupuncture stimulations at one vision-
related acupoint and one nearby NAP. We found that indeed
several brain areas predicted whether the subject was
currently receiving acupuncture stimulation at the GB37 or
the NAP with high accuracies. These most discriminating
areas include subregions of occipital cortex, the limbic-
cerebellar system, and somatosensory cortex.

It has been reported that acupuncture performed at
vision-related acupoints and NAP both evoked BOLD
signal changes in occipital cortex, and their neural response
patterns had multiple overlapped regions, which did not
significantly differ from each other in fMRI signal change
[6]. In our study, we proved that by applying MVPA, the
subtle difference in BOLD signal changes in subregions of
occipital cortex could be extracted to distinguish the
different neural response patterns. The highest discriminat-
ing accuracy in left cuneus of occipital gyrus reached 91%.
Besides, there were also several regions of lingual gyrus,
middle occipital gyrus and fusiform gyrus where discrim-
inating accuracy was lower but still above 65% (threshold
of discriminating level). The results supported that the
neutral response patterns in occipital cortex induced by
acupuncture stimulation at ACUP and NAP could be
distinguished effectively.

High discriminating accuracies were also achieved in
multiple regions of limbic-cerebellar system (shown in Fig. 2),
including insula, rACC and pACC, pons, amygdala,
culmem in anterior lobe and declive of vermis in posterior
lobe of cerebellum. The limbic-cerebellar system plays a
central role in regulating and integrating sensorimotor,
autonomic, endocrine and immunological functions, as well
as cognition and affect. Furthermore, acupuncture-per-
formed at main classical acupoints involves brain circuits
that regulate and integrate diverse somatic and mental
functions in a coordinated manner. Therefore, the limbic-
cerebellar system’s central role in this multifaceted effects of
acupuncture stimulation is not surprising and has been
affirmed in a former study [7]. Here, our results identified
subregions of the limbic-cerebellar system could distinguish
the verum acupuncture from the sham acupuncture condi-
tion based on the differences of fMRI signal changes. We
came to the conclusion that verum acupuncture exerted
different modulation over the limbic-cerebellar system
compared with sham acupuncture.

Results showed that a subregion of SII presented
discriminating accuracies up to 82%. Both verum and
sham acupuncture stimulus with the same needling manip-
ulation induce signal responses located in SII which is

generally involved in the nociceptive processing and pain
perception [24]. However, our result here presented the
identified subregions of SII which could discriminate
different acupuncture stimulations performed at ACUP and
NAP with high accuracies. This substantiates that SII played
different role in the neutral responses to acupuncture
stimulation at real acupoint and NAP in sensory-discrimi-
native aspects.

For comparison, standard GLM analysis was also
conducted in our study. The two-sample ¢ test (P<.005,
uncorrected), ACUP group versus SHAM group, showed
activations in similar brain areas, including subregions of
limbic-cerebellar system and occipital cortex, as the brain
areas with high discriminating accuracies derived from
MVPA. These activations demonstrate that acupuncture
stimulation performed at real acupoint aroused larger signal
changes in some brain regions. However, these activations
showed in the Table 2 are generally small even the result of
two-sample 7 test were uncorrected with a threshold P<.005.
Therefore, the neutral response patterns of acupuncture
stimulation at ACUP and NAP had multiple overlapping
regions and did not significantly differ from each other. This
result is in consistent with previous study [6]. But the MVPA
approach identified large distribution of brain areas which
presented discriminating accuracies higher than 65%.
Compared to GLM-based approach, this illuminated that
the discrepancies of spatial patterns derived from MVPA
approach could present the differences of neutral responses
to acupuncture between the ACUP and SHAM groups with
high statistical reliability.

Before closing, several potential limitations of our study
must be addressed. One limitation is the feature selection
approach we used. In order to consider the dependency
among voxels, we applied “searchlight” method where the
correlation structure among a local set of voxels in a
“searchlight” is utilized. This method relies on the
assumption that the discriminating information could be
provided in neighboring voxels within a “searchlight” of
specified radius. However, this locally distributed analysis
might be sub-optimal when no hypothesis is available on the
size of the neighborhood and might fail to detect the
discriminative patterns jointly encoded by distant regions
[23]. The second limitation exists in the step of dimension
reduction. We applied SVD as a dimension reduction device
and simply allowed SVM to work with the first singular
vectors which had the largest corresponding singular value.
There was indeed loss of information in this step. Future
researches will employ more efficient feature selection
strategies prior to the pattern recognition analysis in order
to reduce the dimensionality with little loss of information
and to preserve sensitivity to small effects. The third
limitation is that the relatively small sample size involved
in the pattern recognition analysis. It is suggested that a
sufficient sample size and number of repeated scans across
same subject is necessary to ensure sample power to detect
changes in brain activity associated with a task and avoid the
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“overfitting” problem in pattern classification problem
[25-26]. In our study, we only acquired one functional run
for each subject follow the acupuncture stimulation at GB
37 or NAP. So the sample size was not quite large enough
for pattern recognition analysis and this factor might
slightly reduce the statistical effectiveness of our results
derived from MVPA.

5. Conclusion

This is the first attempt applying multi-voxel pattern
analysis to explore the acupoint specificity with basic pattern
recognition approach. We observed that high discriminating
accuracies were achieved in subregions of vision-related
cortex, limbic-cerebellar system, and somatosensory cortex.
These discriminating areas indicate the distinct BOLD signal
changes induced by verum acupuncture stimulation per-
formed at GB37 compared with one nearby NAP. Therefore,
our study could provide positive evidence into the
acupuncture specificity.
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Appendix A. Singular value decomposition

In linear algebra, the SVD is an important factorization of
a rectangular real or complex matrix, with several applica-
tions in signal processing and statistics. Applications which
employ the SVD include computing the pseudoinverse, least
squares fitting of data, matrix approximation and determin-
ing the rank, range and null space of a matrix.

Suppose M is an m-by-n matrix whose entries come from
the field K, which is either the field of real numbers or the
field of complex numbers. Then there exists a factorization
of the form: M=UY V", where U is an m-by-m unitary matrix
over K, the matrix ) is m-by-n diagonal matrix with
nonnegative real numbers on the diagonal, and 7 denotes
the conjugate transpose of V, an n-by-n unitary matrix over
K. Such a factorization is called a singular-value decompo-
sition of M.

A common convention is to order the diagonal entries Y ;;
in nonincreasing fashion. In this case, the diagonal matrix
is uniquely determined by M (though the matrices U and V
are not). The diagonal entries of ) are known as the singular
values of M.

Appendix B. Support vector machine

The SVM algorithm will be briefly summarized here
[18]. Tt has been shown that the optimal hyperplane is
defined as the one with the maximal margin of separation
between the two classes. There is a weight vector w and an
offset b such that

yi{(W)TVi + b}> 0 (B.1)

where y; is the class label (+1 for the class 1 and —1 for the
class 2), and w; are the training examples (projected
volumes onto the principal components).

Rescaling w and b such that the point(s) closest to the
hyperplane satisfy

[(w)vi + b| =1 (B.2)

Obtains the canonical form of the hyperplane, given by
y,~<(w)Tv,» + b)21 (B.3)

The margin, the distance to a separating hyperplane from
the point closer to it, measured perpendicularly to the
hyperplane is 1/|w||*. To maximize the margin, one has to
minimize |w|| subject to Eq. (B.3). The solution w is
constructed by solving a constrained quadratic optimization
problem, and it has an expansion in terms of a subset of
training examples that lie on the margin (support vectors),
given by

N
w= Z HAY (B:4)
i=1

The training examples v; with coefficients o; nonzero,
called support vectors, carry all information relevant about
the classification problem.

The class label of a test example v is computed by the
hyperplane decision function, given by

f(v) =sgn (Z yioy (v vi) + b) (B.5)

i=1
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