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Abstract: As a novel modality of molecular imaging, bioluminescence 
tomography (BLT) is used to in vivo observe and measure the biological 
process at cellular and molecular level in small animals. The core issue of 
BLT is to determine the distribution of internal bioluminescent sources from 
optical measurements on external surface. In this paper, a new algorithm is 
presented for BLT source reconstruction based on adaptive hp-finite 
element method. Using adaptive mesh refinement strategy and intelligent 
permissible source region, we can obtain more accurate information about 
the location and density of sources, with the robustness, stability and 
efficiency improved. Numerical simulations and physical experiment were 
both conducted to verify the performance of the proposed algorithm, where 
the optical data on phantom surface were obtained via Monte Carlo 
simulation and CCD camera detection, respectively. The results represent 
the merits and potential of our algorithm for BLT source reconstruction. 

©2009 Optical Society of America 
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1. Introduction 

Molecular imaging has rapidly developed over the past few years because of its ability to 
observe the molecular and cellular information in vivo [1–3].Compared with the traditional 
imaging techniques like positron emission tomography (PET), single photon emission 
computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound, X-ray 
computed tomography (CT), optical imaging modality, especially fluorescence molecular 
tomography (FMT) and bioluminescence tomography (BLT) methods, has high molecular 
specificity, nonionizing radiation and high cost-effectiveness [4–6]. The major advantage of 
BLT over FMT is that there is no inherent background bioluminescence in most tissues, which 
yields higher imaging contrast [1]. It becomes an increasingly important instrument for 
biomedical researchers to diagnose diseases, evaluate therapies, and facilitate drug 
development with small animals such as mouse models [1–3]. 

As an optical imaging modality, BLT enables quantitative reflection of the molecular and 
cellular information in intact living animals by recovering internal bioluminescent sources [7]. 
However, the source reconstruction is an ill-posed problem and the uniqueness research of 
BLT shows that a priori information has a great influence on source reconstruction [8]. The 
commonly used a priori information includes the optical parameters, the structure of small 
animals and the permissible source region. Optical parameters (absorption coefficient, 
scattering coefficient and anisotropy factor) of arbitrary tissue can be assigned from an optical 
database, or determined by diffuse optical tomography [9,10]. The anatomical structures of 
small animals are usually acquired with Micro-CT/MRI. A priori permissible source region 
can be estimated by the surface photon flux distribution and the heterogeneous structure of the 
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detected object [11]. Feng et al brought forward an optimal permissible source region strategy 
which is automatically selected without human intervention [12]. 

Finite element method (FEM), which is a classical numerical method to solve the partial 
differential equation, has been established for BLT source reconstruction [9]. Adaptive h-
finite element method (h-FEM) was also used in BLT for its high performance [11,12]. In this 
paper, we develop a new algorithm for source reconstruction based on adaptive hp-finite 
element method (hp-FEM) in BLT. The hp-FEM is a modern version of FEM which varies 
both the diameter and polynomial degree of elements in order to maximize the convergence 
rates. This method was first introduced in the 1980’s [13], and its theoretical foundations have 
been well established today. When choosing a appropriate mesh size h and polynomial degree 
of elements p, hp-FEM can arrive in an unconditional exponential convergence, which is 
superior to other numerical methods [14]. The hp-FEM algorithm employs the initial 
permissible source region as a priori knowledge to establish a direct linear relationship 
between the unknown source variable and the known measured data. The hp-FEM algorithm 
begins on an initial coarse volumetric mesh to recover the source distribution. Based on the 
solution on the coarse mesh, we choose appropriate p- or h-refinement strategy for each 
element in solution region. Several experiments were conducted to validate the proposed 
algorithm. First, we reconstruct the source with the synthetic data generated through a 
modified molecular optical simulation environment (MOSE) [15,16] developed based on 
Monte Carlo method. Then the proposed algorithm is also verified in physical experiment and 
photon flux on the surface is captured via a high-sensitivity CCD camera. 

The paper is organized as follows. The BLT algorithm based on adaptive hp-FEM is 
presented in section 2. In section 3, we evaluate the performance of the proposed algorithm 
through numerical simulations and physical experiment. Discussions are given in the last 
section. 

2. Method 

2.1. Diffusion approximation and boundary condition 

For photon propagation in biological tissue, scattering is dominant over the absorption. 
Therefore, light transport can be described by the steady-state diffusion equation as [11,17] 

 ( )( ) ( ) ( ) ( ) ( )  (x )
a

D x x x x S xµ−∇ ⋅ ∇Φ + Φ = ∈Ω   (1) 

where Ω  is the region of interest; ( )xΦ  represents the photon flux density at point x 

[W/mm
2
]; ( )S x  denotes the internal source density [W/mm

3
]; ( )

a
xµ  is the absorption 

coefficient [mm
−1

]; ( )( )( ) 1

( ) 3 ( ) 1 ( )
a s

D x x g xµ µ
−

= + −  is the optical diffusion coefficient, 

( )
s

xµ  is the scattering coefficient [mm
−1

]  and g is the anisotropy parameter [18–20]. 

In order to eliminate the influence of noise caused by sources outside the phantom, we 
assume that the experiment is performed in an ideal dark environment. Thus, Robin boundary 
condition can be employed [21]: 

 ( )( ) 2 ( ; , ') ( ) ( ) ( ) 0  ( )x A x n n D x v x x xΦ + ⋅∇Φ = ∈∂Ω   (2) 

The measured quantity is the outgoing flux density on ∂Ω [22] 

 ( ) 1
( ) ( ) ( ) ( )  ( )

2 ( )
n

Q x D x v x x x
A x

= − ⋅∇Φ = − Φ ∈∂Ω   (3) 

In this paper, the measured flux ( )Q x  on the surface is obtained via Monte Carlo method in 

numerical simulation and CCD camera detection in physical experiment, respectively. And 

our purpose is to reconstruct the source distribution ( )S x  inside the phantom from the 
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external measurement ( )Q x , given the mismatch between the refractive indices n  for Ω  and 

'n  for the external medium, ( ; , ')A x n n  can be approximately represented as [21]: 

 
1 ( )

( ; , ')
1 ( )

R x
A x n n

R x

+
=

−
  (4) 

where ( )R x  can be approximated with 2 11.4399 0.7099 0.6681 0.0636R n n
− −≈ − + + +  [21]. 

2.2. Reconstruction method based on adaptive hp-FEM 

Based on the finite element theory [23], the governing Eq. (1) for ( )xΦ  can be proved 

identical to the following weak form formulation: 

 
1

( )( ( )) ( ( )) ( ) ( ) ( )

1
       + ( ) ( ) ( ) ( )   ( ( ) ( ))

2 ( )

a

n

D x x x dx x x x dx

x x dx S x x dx x H
A x

µ
Ω Ω

∂Ω Ω

∇Φ ⋅ ∇Ψ + Φ Ψ

Φ Ψ = Ψ ∀Ψ ∈ Ω

∫ ∫

∫ ∫
  (5) 

where 1( )H Ω  is the Sobolev space. 

In the framework of the adaptive hp-FEM, let { }1 2
( ), ( ), , ( ),

p
x x xΨ Ψ Ψ⋯ ⋯ be 

interpolation basis functions with different orders at different mesh levels. When only 

considering the kth mesh level, the continuous field ( )xΦ  can be discretized with its values at 

a finite number of points in Ω . 

 
1

( ) ( ) ( ) ( )
N

k k p

i i

i

x x x xφ
=

Φ ≈ Φ = Ψ∑   (6) 

where p  is the order of the interpolation basis functions, N  denotes the number of the 

interpolation basis functions, ( )p

i
xΨ  is interpolation basis functions with a order of p , k

i
φ  is 

the ith nodal value on the kth mesh level. Similarly, the source ( )S x  is discretized on the 

same finite element mesh as: 

 
1

( ) ( ) ( ) ( )
N

k k p

i i

i

S x S x s x xγ
=

≈ = ∑   (7) 

where k

i
s  and ( )p

i
xγ  are the nodal values and interpolation basis functions on the kth mesh 

level, respectively. The selection of interpolation basis functions ( )p xγ  may be the same with 

that of nodal basis functions ( )p xΨ .Using ( )p xΨ  as the test function, and substituting Eqs. 

(6) and (7) into Eq. (5), we can get the weak form 

 
1

1

( ( ( ) ( ) ( ) ( ) ( ))

1
                          ( ) ( ) ( ) ) ( ) ( ) ( )

2

N
p p p p

m n a m n

i

N
p p p p

m n m n

in

D x x x x x dx

x x x dx x x dxS x
A

µ

γ

Ω
=

∂Ω Ω
=

∇Ψ ∇Ψ + Ψ Ψ

+ Ψ Ψ Φ = Ψ

∑ ∫

∑∫ ∫
  (8) 

The matrix form of Eq. (8) can be expressed as follows: 

 
k k k k

M F SΦ =   (9) 

where 
k

M  and 
k

F  are system matrix which are sparse, positive and definite. Because only 

the measured data on the boundary is known, we need rearrange the Eq. (9) as literature [9] 
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11 12 11 12

21 22 21 22

      

      

B Per

k k k k k k

I For

k k k k k k

M M F F S

M M F F S

       Φ   
=      

Φ             
  (10) 

where B

k
Φ  represents the nodal flux density on the boundary ∂Ω , and I

k
Φ  the flux density on 

internal nodes. Per

k
S  and For

k
S  are the source values of the permissible source region and the 

forbidden region respectively, which are marked according to a priori knowledge. Thus, Eq. 
(9) can be reduced to: 

 ( ) ( )( ) ( )1 1
11 12 22 12 11 12 22 21

( )
T

B Per

k k k k k k k k k kM M M M F M M F S
− −

− Φ = −   (11) 

Equation (11) can be rewritten as: 

 Per B

k k k
A S = Φ   (12) 

where ( ) ( )( ) ( )
1

1 1
11 12 22 12 11 12 22 21

( )
T

k k k k k k k k kA M M M M F M M F
−− −

= − − . 

Because of the ill-posed nature of BLT [8], it is difficult to solve Eq. (12) directly. In this 
paper, the classical Tikhonov regularization method is adopted to obtain the solution of Eq. 
(12). Therefore, the following optimization problem is defined to determine source 
distribution 

 { }
inf sup

min ( ) ( )
per
k

per per B Per

k k k k k k
S S S

S A S Sλ η
Λ≤ ≤

Θ = −Φ +   (13) 

where 
inf

S  and 
sup

S  are the lower and upper bound of the source density, Λ  is the weight 

matrix, and 
T

V V V
Λ

= Λ , λ  denotes the regularization parameter, and ( )η i  is the l2 norm 

penalty function. In this paper, 

 
2 2

( ) ( )
( )per per B Per

k k k k kL L
S A S Sλ

Ω Ω
Θ = −Φ +   (14) 

A modified Newton method with active set strategy is employed to deal with the minimization 
problem [24]. 

In the source reconstruction, supposing that per
S  is the unique solution of BLT 

reconstruction, BΦ  is the given photon flux density on the phantom surface. The convergence 
rate can be obtained by choosing the proper h-refinement or p-refinement for each tetrahedron 
element [13]. 

 
2 2 2

min( , ) ( 1 2) min( , ) ( 1 2)

( ) ( ) ( )
( ) ( ) 'per B p t t per p t t per

L L L
S Ch p S C h p S− − − −

∂Ω Ω Ω
Φ −Φ ≤ Φ ≤  (15) 

So we can have 

 

2 2 2

2 2

2

( ) ( ) ( )

min( , ) ( 1 2)

( ) ( )

min( , ) ( 1 2)

( )

( ) ( )

           '

            = ''

per per B per per B per

L L L

p t t per per

L L

p t t per

L

S AS S S S

C h p S S

C h p S

λ λ

λ

Ω ∂Ω Ω

− −

Ω Ω

− −

Ω

Θ = −Φ + = Φ −Φ +

≤ +   (16) 

In Eq. (16), BΦ  is the measured data on the phantom surface. C , 'C , ''C  are parameters 

independent of h and p; the parameter t depends on the regularity of the exact solution and is 
large when the solution is smooth [14]. If the exact solution to this problem is smooth, then 
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min( , )p t p=  and an exponential rate of convergence is expected to be achieved for adaptive 

mesh refinement. 
h-FEM has been already employed for BLT reconstruction [11], and fine source 

reconstruction results were achieved due to its fine adaptive h-refinement in the solution 
region. But compare with hp-FEM, only linear interpolation basis functions are used in h-
FEM, which would induce poorer solution precision. The hp-FEM can reduce the mesh size 
(h-refinement) and increase the order interpolation basis functions (p-refinement) on each 
mesh level synchronously, so a faster convergence rate can be obtained, which is also the 
rationale that we use adaptive hp-FEM for BLT reconstruction. 

In adaptive hp-FEM strategy, according to the source distribution solved on the previous 
mesh level, some tetrahedron elements are chosen to be refined. When the refinement 
elements are inside the solution region, the p-refinement is more effective than h-refinement 
due to higher order interpolation basis functions [25]. The major aim in this paper is to obtain 
the reconstruction results of source distribution, so we only consider the element in the priori 
permissible source region, which is benefit to improve the result quality. 

hp-Refinement criterion: let 
i

s  denotes the density of the ith tetrahedron of the priori 

permissible source region, and 
max

s  denotes the max density of the reconstructed source. If 

maxi
s sβ>  ( β is a constant, 0 1β< < ), p-refinement is performed on this tetrahedron, and h-

refinement is selected on the surrounding tetrahedron. 

High order interpolation basis functions are difficult to implement in three-
dimensional complex phantom. In this paper, we only let p = 1 or 2, and 
divide a selected tetrahedron into eight son tetrahedra for p = 2 [25]. Following the p-

refinement, the h-refinement divides a tetrahedron into 2 or 4 son tetrahedra. The p-refinement 
and all the possibility of h-refinement of a tetrahedron are shown in Fig. 1(a) and Fig. 1(b)-(d) 
respectively. 

 

Fig. 1. p-refinement and h-refinement in three-dimensional space. (a) is the p-refinement of an 
element, and (b)-(d) are the h-refinement of an element. 

In adaptive hp-FEM algorithm, we select the norm of the gradient 
k

i
gΘ  and the distance 

between the last two steps 
k

i

sd  as the indexes of the switch condition from the kth mesh 

level to the (k + 1)th mesh level, where ( )
k

i i

k kg SΘ = ∇Θ  and 
1

k

i i i

s k kd S S
−= − . When 

( )

k

i k

gg εΘ <  or 
( )

k

i k

s dd ε< , the optimization problem (13) will stop. We utilize the 

discrepancy between the measured data and computational boundary nodal flux data or the 

maximum number of mesh refinement 
max

L  as the whole reconstruction procedure’s stopping 

criterion. 
An intelligent permissible source region strategy was added to hp-FEM algorithm to 

decrease the ill-posedness of inverse problem in source reconstruction. The initial permissible 
source region is given as a prior knowledge artificially. Then the permissible source region on 
the next mesh level is specified based on the reconstructed source on the current mesh level. If 
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a tetrahedron satisfies the following condition, it will be sorted out to form the new 
permissible source region. 

 { }1 1  if  max( )j
i

j

k k P
R P R s sδ+ +∈ ≥   (17) 

where 
1k

R +  is the permissible source region of the (k + 1)th refinement mesh level, j
P  

represents jth tetrahedron element in 
k

R , j

i
P denotes a vertex of j

P ,
iPs  is the density of j

i
P , 

0 1δ< ≤  is a constant, max( )s  represents the maximum density of the reconstructed source 

in kth refinement mesh level. This strategy can select an optimal permissible source region on 
each mesh level, which can decrease the ill-posed of BLT effectively, and obtain a better 
reconstruction result. The flow chart of the algorithm is shown in Fig. 2. 

 

Fig. 2. The flow chat of the proposed algorithm. 
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3. Experiments and Results 

3.1. Numerical simulations 

In numerical simulations, a heterogeneous cylindrical phantom of 30 mm height and 10 mm 
radius was applied to model a mouse chest. It consists of four ellipsoids and one cylinder to 
represent muscle, lungs, heart, bone and liver, as shown in Fig. 3 (a). Optical parameters are 
listed in Table 1. The parameters calculated by optical tomography procedure are 
corresponding to the physical materials, which are supported by Prof. Ge Wang's lab 
(Bioluminescence Tomography Laboratory, Department of Radiology, University of Iowa). 

 

Fig. 3. Heterogeneous phantom. (a) A heterogeneous phantom with a single light source, 
composed of muscle, lungs, heart, bone, liver and source in right lung; (b) The initial mesh 
used in adaptive hp-FEM algorithm. 

Table 1. Optical parameters of the heterogeneous phantom 

Material Muscle Lung Heart Bone Liver 
1[ ]

a
mmµ −  0.01 0.35 0.2 0.002 0.035 

1[ ]
s

mmµ −  4.0 23.0 16.0 20.0 6.0 

g  0.9 0.94 0.85 0.9 0.9 

When implementing the reconstruction procedure, the objective and reliable surface 
measured data is needed. In order to avoid inverse crime, MOSE was used to obtain the 
synthetic data. It is difficult to obtain all the surface data of a cylinder phantom in actual 
measurement, so only the data on cylinder side is used for source reconstruction in this paper. 

In single source case, a solid sphere source of 1 mm radius and 0.238 nW/mm
3
 power 

density was centered at (3, 5, 15) inside the right lung as shown in Fig. 3(a), and the whole 
right lung was specified as a priori permissible source region. In the reconstruction procedure, 
a coarse volumetric mesh shown in Fig. 3(b) was chosen as the initial discretization of 

phantom. We set the lower bound 
inf

0k
S = , the upper bound 

sup
1000.0

k
S =  and the 

regularization parameter 91.0 10
k

λ −= ×  for all mesh levels. In addition, the gradient tolerance 

( )k

g
ε  and the distance tolerance ( )k

d
ε  were equal to 171.0 10−× and 161.0 10−× , and constant on 

each mesh level. The stopping threshold εΦ  and the maximum number of the mesh 

refinement 
max

L  were set to be 31.0 10−×  and 3, respectively. In addition, parameters 

including the initial guess 
0 ( )

1 inf sup max
, , , ,

k k k

g
S S S Lε  are the same in all algorithms. 
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This group of numerical simulation was implemented using three algorithms, FEM on 
normal mesh, h-FEM and hp-FEM. Their reconstruction results are shown in Fig. 4(a)-(c), and 
Fig. 4(d)-(f) denote their corresponding cross sections. For FEM algorithm, the normal mesh 
used for reconstruction contains 4436 nodes; the ultima refined mesh is 3984 nodes for hp-
FEM, and 3945 nodes for h-FEM. The differences of reconstruction results can be 
distinguished intuitionally from Fig. 4, and our proposed algorithm has a better reconstructed 
location and power density for the actual source than FEM and h-FEM. In order to analyze the 

results quantitatively, we define the distance error 
2 2 2

0 0 0
( ) ( ) ( )d x x y y z z= − + − + −  and 

the relative source density error 
recon real real

S S Sξ = − , where ( ), ,x y z  is coordinate of the 

reconstructed source with the maximum density and ( )0 0 0
, ,x y z  is that of the actual source 

center, 
recon

S  and 
real

S  are the density of reconstructed source and actual source, respectively. 

The quantitative results are listed in Table 2. Quantitative comparison also shows that the 
proposed algorithm can obtain a much better reconstruction results. The reconstructed 
location is (3.23, 5.38, 14.83), the distance error is 0.47 mm, and the relative source density 
error is less than 8%, which is far better than that using of the other two algorithms. 

 

Fig. 4. Reconstruction results of single source simulation. (a) Result using FEM on a normal 
mesh; (b) Result using h-FEM; (c) Result using proposed algorithm, the red sphere denotes the 
actual source; (d), (e), and (f) are the cross section of (a), (b) and (c) at z = 0, respectively. The 
red dashed circularity denotes the actual source. 

Table 2. Quantitative comparison between actual source and the reconstructed source 
with different methods 

Algorithm Reconstructed 
location 

d  (mm) Reconstructed 
density 

(nW/mm
3
) 

ξ  

FEM (4.90, 4.89, 14.75) 1.92 0.0527 77.86% 

h-FEM (4.21, 5.96, 14.88) 1.55 0.164 30.94% 

hp-FEM (3.23, 5.38, 14.83) 0.47 0.219 7.95% 
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In the actual measurement, the noise effect is an important factor that cannot be neglected. 
Although Monet Carlo-based synthetic data contains simulated noise, the noise level is very 
low under a large number of the tracking photons (10

7
 photons in this paper). Therefore, 

Gaussian noise with different levels is added to the synthetic data to evaluate the stability and 
robustness of the proposed algorithm. The noise is added by the flowing formula: 

 m m

k k
EδΦ = Φ +   (18) 

where m

k
Φ  is the surface measure data, δ  is noise level parameter, E  is a random error 

generated by a MATLAB function randn, and its mean value is 
2

/m

k
nΦ , where 

2

m

k
Φ  is 

the 
2

l  norm of m

k
Φ , n  is the number of surface measured nodes. This noise is as similar as the 

noise caused by the dark current of CCD camera in physical experiment. 
The reconstruction results under different noise levels (0% to 40%) are shown in Table 3. 

As the noise level increasing, the reconstructed location keeps invariable, and the density has 
tiny fluctuation, but which can be neglected. It can be concluded that there is little effect of 
noise on reconstruction results. The major reason is that the Gaussian noise has less influence 

to the surface region with large value of mΦ , which plays a key role on BLT reconstruction. 

So the reconstruction results under different noise level are expectable. And the results also 
confirm the robustness of the proposed algorithm. 

Table 3. Reconstruction results with the proposed algorithm under different noise levels 

Noise 
level 

Reconstructed 
location 

d  (mm) 

Reconstructed 
density 

(nW/mm
3
) 

ξ  

0% (3.23, 5.38, 14.83) 0.47 0.21907 7.95% 

10% (3.23, 5.38, 14.83) 0.47 0.21849 8.20% 

20% (3.23, 5.38, 14.83) 0.47 0.21797 8.42% 

40% (3.23, 5.38, 14.83) 0.47 0.21859 8.16% 

Moreover, the hp-FEM algorithm is also evaluated in the case of dual source 
reconstruction. The spatial resolution of reconstructed source is related to the mesh size in 
solution region. A smaller mesh size can obtain a better spatial resolution accordingly. In this 
part, the comparison experiment between FEM on fine grid and hp-FEM was implemented. 
The purpose is to compare the results of global refinement (FEM on a fine grid) and local 
adaptive refinement (hp-FEM) in the condition of similar small mesh size. In the simulation, 
the right lung was still specified as a priori permissible source region, and two light sources 
with 1 mm radius and the same density of 0.238 nW/mm

3
 were placed at (3, 5, 17) and (3, 5, 

13) in right lung. 
The reconstruction results are shown in Fig. 5. The fine grid of FEM consists of 16295 

nodes and 85193 tetrahedra, and the ultima refined mesh is 4128 nodes and 19240 tetrahedra 
for hp-FEM. So their mesh size in the permissible source region is similar. Using FEM on fine 
grid, the BLT reconstruction program coded in MATLAB takes 942.26 seconds on our 
desktop computer (Intel(R) Core(TM) 2 CPU 6300 @ 1.86GHz and 2G RAM). The results 
are shown in Fig. 5 (a)-(b). However, the proposed algorithm only cost 254.01 seconds, and 
the results are shown in Fig. 5(c)-(d). It seems obvious that the reconstructed location using 
our proposed algorithm is better than that using FEM on a fine grid. And the quantitative 
comparison results are listed in Table 4. The two reconstructed density using FEM on a fine 
grid is very similar, but the relative source density errors are both not ideal (16.39% and 
21.37%). Furthermore, the reconstructed locations are very poor (the distance errors are 3.27 
mm and 3.20 mm respectively). The reconstructed locations using hp-FEM is much better (the 
distance errors are 0.14 mm and 0.66 mm, respectively), and the relative source density error 
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of one source is 4.62%, which is also better than that using FEM on a fine grid. But the 
deficiency is that we cannot obtain a fine reconstructed density for the other source. 

 

Fig. 5. Dual source reconstruction results. (a) Result using FEM on a fine grid; (c) Result using 
the proposed algorithm; (b) and (d) are the amplified region near the actual source of (a) and 
(c), respectively. The red sphere is the actual source, and the green mesh denotes the tetrahedra 
near the actual source. 

Table 4. Dual source reconstruction results with the proposed algorithm and FEM on fine 
grid 

Algorithm 
Reconstructed 

location 
d  (mm) 

Reconstructed 
density 

(nW/mm
3
) 

ξ  Time cost 
(sec.) 

FEM on 
fine grid 

(0.59, 2.80, 17.17) 3.27 0.199 16.39% 
942.26 

(1.46, 2.56, 11.65) 3.20 0.173 21.37% 

hp-FEM 
(2.95, 4.89, 16.94) 0.14 0.062 73.95% 

254.01 
(3.65, 4.88,12. 96) 0.66 0.227 4.62% 

3.2. Physical experiment 

We also verify the feasibility of the proposed algorithm by physical experiment, in which the 
surface measured data was obtained by a CCD camera. A homogeneous cylindrical phantom 
of 45 mm height and 22.5 mm radius was used in this experiment. The phantom was made 
from nylon, and one small hole of 2.95 mm radius and 21 mm depth was drilled in the 
phantom to emplace the light source, as shown in Fig. 6(a). According to luminescence 
principle of luminescent light stick, the mixed solutions of peroxide, ester compound solutions 
and fluorescent dye were injected into the hole in the phantom, and then the red light with a 
central wavelength about 650 nm was emitted due to the chemical reaction. In addition, the 
optical parameters of the phantom were determined by a time-correlated single photon 
counting (TCSPC) system specifically constructed for the optical properties of the turbid 
medium [26]. The measured optical parameters of the phantom are listed as follows: the 
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absorption coefficient 10.0138
a

mmµ −≈  and the reduced scattering coefficient 

1' 0.91
s

mmµ −≈ , respectively, where ' (1 )
s s

gµ µ= − . In the experiment, 0.150 ml mixed 

solution was injected into the hole, so a cylindrical source of 5.4 mm high and 2.95 mm radius 
is centered at (9.88, 1.5, 26.7), as shown in Fig. 6(b). 

 

Fig. 6. Physical phantom. (a) The homogeneous physical phantom; (b) The location of the 
single source in the phantom; (c) The middle cross section of the phantom. Four degrees show 
the direction of CCD camera during data acquisition. 

For the absorption property of the phantom, the photon flux measured on the phantom 
surface is quite weak. Hence, a back-thinned, back-illuminated cooled CCD camera (PIXIS 
2048B) was employed to collect the outgoing photons from the phantom surface. To avoid 
external disturbance, the whole experiment was performed in a darkroom. A motorized 
rotation stage under computer control was used to rotate the phantom for acquiring the photon 
flux density from different directions, as illustrated in Fig. 6(c). The photon flux on the four 
views of the cylindrical phantom obtained by CCD camera are shown in Fig. 7(a)-(d), 
respectively. Before reconstruction, the 2D data obtained by CCD camera was mapped to the 
3D surface of the cylindrical phantom based on Lambertian source theory, and the result is 
shown in Fig. 7(e). 

 

Fig. 7. The surface measured data of the homogeneous phantom. (a), (b), (c) and (d) are front 
view, left view, back view and right view of the cylindrical phantom on CCD camera, 
respectively; (e) is the photo flux density on the surface of the cylindrical phantom after 
mapping from 2D data. 
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The node number used for FEM and hp-FEM are 1598 and 1237, respectively. The point 
coordinate of maximum photon flux density on the surface is (22.47, 1.25, 27.69). Because 
the phantom is homogeneous, we first set the permissible source region as 

1 0 0 0 0
{( , , ) : 24.7 29.7}P x y z z= < <  for reconstruction, and the results are shown in Fig. 8(a)-

(d). The distance error using FEM and the proposed algorithm are 3.22 mm and 2.98 mm, 
respectively. Furthermore, a larger source permissible region 

2 0 0 0 0
{( , , ) :19.7 33.7}P x y z z= < <  was also employed to reconstruct the source, and the 

results are shown in Fig. 8(e)-(h). In this condition, the reconstructed location using FEM on a 
normal mesh becomes poor (the distance error is 4.13 mm). Due to the adaptive h-refinement 
and p-refinement, the reconstruction result using the proposed algorithm is as similar as that 
obtained with the source permissible region P1. The quantitative analysis of reconstructed 
location is listed in Table 5. But the quantitative density reconstruction is not provided in this 
part. The reconstruction results show that the change of permissible source region has little 
influence on hp-FEM but much influence on FEM. 

 

Fig. 8. Reconstruction results of phantom experiment with different permissible source region; 
the red cylinder is the actual source. (a), (c) Reconstruction result using FEM on a normal mesh 
and the proposed algorithm with a small permissible source region P1; (e), (g) Reconstruction 
results using FEM on a normal mesh and the proposed algorithm with a lager permissible 
source region P2; (b), (d), (f) and (h) are the amplified region near the actual source of (a), (c), 
(e) and(g), respectively. The green mesh denotes the tetrahedra near the actual source. 

Table 5. Reconstruction results in homogeneous physical phantom experiment 

Permissible 
source region 

Method Reconstructed location d  (mm) 

P1 FEM on normal mesh (12.05, −0.76, 25.95) 3.22 

 hp-FEM (9.42, 1.05, 23.79) 2.98 

P2 FEM on normal mesh (10.34, 1.89, 22.61) 4.13 

 hp-FEM (8.20, 2.85, 24.83) 2.86 

4. Discussion and conclusions 

Mesh size (h) and polynomial degree (p) of elements are two important factors in adaptive 
FEM for BLT source reconstruction. The global reducing mesh size or increasing polynomial 
degree of elements is infeasible for the overwhelming computational complexity. Thus, the 
adaptive strategy is essential. In literature [11], Lv has used h-FEM algorithm to achieve a 
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better reconstructed location and density of the source. In this paper, we developed a novel 
adaptive hp-FEM based algorithm to reconstruct the bioluminescent source inside the 
phantom, and then evaluated its performance in numerical simulations and physical 
experiment, respectively. The main motivation for the use of hp-FEM is inspired by the 
following result: ‘an optimal sequence of hp-grids can achieve exponential convergence for 
elliptic problems with a piecewise analytic solution, whereas h- or p-FEM converge at best 
algebraically’ [27,28]. Using hp-FEM algorithm and an intelligent permissible source region 
strategy, a more accurate reconstructed location and density of source can be obtained 
satisfyingly. 

Although there is no inherent background autofluorescence in most tissues and the 
experiment is performed in a darkroom, the noise is inevitable, such as the noise from dark 
current of CCD camera. The simulation results with noise of different levels show the stability 
and robustness of the proposed algorithm. In the dual source case, accurate reconstructed 
location of the sources are obtained, while one source’s reconstructed density is not ideal. A 
physical phantom with CCD measured surface data was also used for single source 
reconstruction, the result shows the feasibility of the proposed algorithm in BLT. Compared to 
FEM, a more accurate reconstructed location of the source can be obtained under a larger 
permissible source region. 

Using the classical Tikhonov regularization method, dual source case was implemented 
with a minimal l2 norm [8]. Due to the large components of sources are lost in the l2 norm, one 
of the reconstructed sources is weaker than the actual source in dual source reconstruction. 
Another Tikhonov regularization method based on l1 norm has been reported in literature [29], 
and better dual sources reconstruction results were obtained compared to the method based on 
l2 norm. So it’s possible to improve the reconstruction results through modifying our hp-FEM 
algorithm. 

In conclusion, we have developed a novel adaptive hp-FEM based algorithm for BLT 
reconstruction. Both the numerical simulation and physical experiment show that the adaptive 
h-refinement and p-refinement can achieve a better reconstructed result. One of our major 
goals is to realize hp-FEM in 3D complex solution region like small animal, and study higher 
polynomial degree of elements. Furthermore, in order to implement dual source reconstruction 

more accurately, we can improve the optimization objective function ( )p

k
SΘ , which is the 

other major work on our next phase. 
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