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Abstract—Fluorescence molecular tomography has become a
promising technique for in vivo small animal imaging and has
many potential applications. Due to the ill-posed and the ill-
conditioned nature of the problem, Tikhonov regularization is
generally adopted to stabilize the solution. However, the result
is usually over-smoothed. In this letter, the third-order simplified
spherical harmonics approximation to radiative transfer equation
is utilized to model the photon propagation within biological tis-
sues. Considering the sparsity of the fluorescent sources, we re-
place Tikhonov method with an iteratively reweighted scheme. By
dynamically updating the weight matrix, L1-norm regularization
can be approximated, which can promote the sparsity of the so-
lution. Simulation study shows that this method can preserve the
sparsity of the fluorescent sources within heterogeneous medium,
even with very limited measurement data.

Index Terms—Fluorescence
tomography.

imaging, optical imaging,

I. INTRODUCTION

N RECENT years, in vivo small animal molecular imaging

has become an important method for biomedical research,
and has many successful applications [1], [2]. Among molecular
imaging modalities, fluorescence molecular tomography (FMT)
is a promising technique that can three-dimensionally resolve
the molecular processes by localizing the fluorescent probes
based on certain inverse mathematical models.
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FMT is often an ill-posed inverse problem since only the pho-
ton distribution on the surface is measurable. This can be allevi-
ated by increasing the measurement datasets. However, even if
sufficient measurements can be obtained, the problem may still
be ill-conditioned, which means that it is unstable and is sensi-
tive to noises. To compute a meaningful approximate solution,
Tikhonov regularization is generally incorporated to make the
optimization problem less sensitive to perturbations. The advan-
tage of Tikhonov regularization is that the optimization problem
is simple and can be efficiently solved by now-standard mini-
mization tools. However, the solution is often over-smoothed
with the localized features lost during the reconstruction pro-
cess [3].

To improve the quality of the reconstructed image, more
a priori information should be included. Fortunately, for FMT
problems, the domains of the fluorescent sources are often very
small and sparse compared with the entire reconstruction do-
main [4]. This can be considered as valuable a priori infor-
mation for FMT. A straightforward way to incorporate sparsity
constraint is to replace the Tikhonov regularization with LO-
norm regularization. However, the problem becomes NP-hard
if LO-norm is utilized, and cannot be solved efficiently. Fortu-
nately, it is proved that when the solution is sufficiently sparse,
LO-norm can be replaced by L1-norm, which is convex and can
be solved by standard optimization tools, such as pursuit al-
gorithms [5]. Another advantage of L1-norm regularization is
that it can still perform well when the measurement data is very
limited. This has been well studied in the area of compressed
sensing [6]. In recent years, several reconstruction algorithms
for optical tomography problems with L1-norm regularization
have been reported [4], [7], [8].

For FMT, another important issue is the accuracy of the
photon-propagation model. Although the diffuse equation has
been extensively utilized to describe photon propagation in bio-
logical tissues, yet it is not applicable in void or more absorptive
regions. To resolve this problem, several improved models have
been utilized, e.g., the discrete ordinates method (Sy ) and the
spherical harmonics approximation (Py ). However, the compu-
tational complexity is much higher. To reach a compromise be-
tween accuracy and efficiency, the simplified spherical harmon-
ics approximation (SP ) to radiative transfer equation (RTE)
has been proposed, which is simpler than Sy and Py with the
same order [9]. Compared with the diffusion model, the SP
model can significantly improve the solution in transport-like
domains with high absorption and small geometries, which has
been well demonstrated in [9]. In recent years, several papers
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regarding SP y-based optical tomography problems have been
published [10], [11].

In this letter, an iteratively reweighted regularization method
is proposed for the FMT problem with the third-order simpli-
fied spherical harmonics approximation (SP3). Based on the
basic idea of FOCUSS algorithm [12], we extend the Tikhonov
method by incorporating a weighting matrix. By iteratively up-
dating the weighting matrix, the L1-norm regularization can
be approximated which tends to promote the sparsity of the
solution. The advantage of the proposed method is that it can
be easily incorporated into the existing iterative-reconstruction
framework, and the extra work is merely the construction of
the weighting matrix at each iteration, which is relatively cheap
compared with the total reconstruction process. Reconstruction
results on simulated data demonstrate the performance of the
proposed method.

II. METHOD

A. Photon-Propagation Model
The SP3 approximation model has the following form [9]:
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where r is within the domain of the object, f1,; (1) = pq (1) +
ws(r)(1 — g*) and ;(r) are the composites of the Legendre
moments of radiance. S(r) is the source term. For the excita-
tion process, S(r) denotes the known excitation light source.
For the emission process, S(r) = ®(r) X (r), where ®(r) is the
excitation light fluence and X () is the fluorescent-yield distri-
bution, which is unknown for the inverse problem. Equation (1)
is complemented by the following boundary conditions:
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where 7 is on the boundary of the domain. The values of A;, B;,
C;, and D; can be found in [9]. When practical measurement is
taken, the measured quantity is the exiting partial current J* (r),
which has the following form:
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The values of J; can be found in [9]. By solving (2), 7V ; in
(3) can be replaced with the linear combinations of ;.

2565

B. Linear Relationship Establishment

In the finite-element framework, (1) and (2) are posed in
their weak solution forms. By applying Green’s first formula,
the weak solution form of (2) can be integrated into the weak
solution form of (1). After discretizing the domain with tetra-
hedron elements and employing the base functions as the test
functions, ¢; can be approximated as ¢, () ~ Z;Y:1 ©ipVp(T),
where v, (1) is the base function for node p and ¢; ,, is the nodal
value. NV is the total number of the discretized nodes. Then,
the SP3 model can be linearized and the following matrix-form
equation can be obtained:
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For the excitation process, the excitation light source is mod-
eled as isotropic-point sources located one-mean-free path of
photon transport beneath the surface. ¢; and @9 can be directly
obtained by solving (4). Considering the inverse crime problem,
1 and ¢ are calculated on a fine mesh using second-order La-
grange elements. Then, the total fluence ®, which is used as
the energy source for the emission process, can be represented
as @1 — 2p9 /3 [11]. Next, we project ® onto a coarse mesh
which is used for the reconstruction of the fluorescent-source
distribution with linear elements.

For the inverse problem, the unknown source term S is ap-
proximated as S(r) ~ Zé\:l ®,X,v,(r), where X, is the un-
known nodal value of the fluorescent yield, which is to be re-
constructed. Then, the following equation can be obtained:
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Based on (3) and (5), we can establish the linear relationship
between the exiting partial current measurement J," and the

m
unknown fluorescent yield distribution X as follows:

Jh = AX. (6)

C. Iteratively Reweighted Regularization

Due to the ill-posed and the ill-conditioned nature of the FMT
problem, Tikhonov regularization is often utilized to make the
solution more reasonable. Here, we extend Tikhonov regular-
ization by incorporating a weighting matrix W

1 22
win B(X) = SIAX = Jo |3 + - [WX[5 )
where 2A? is the regularization parameter that balances the two
terms and W is a diagonal matrix. In this letter, we always
assume that X is nonnegative. This energy function E(X) can
be efficiently minimized by iterative minimization tools such as
the Newton method.

It is evident that the desirable norm || X ||; can be represented
using ||W X ||3 by choosing W as follows:

Wi (iyi) = ®)
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Fig. 1. Mouse-mimicking heterogeneous phantom with three spherical fluo-
rescent sources of 2 mm in diameter centered in z = 0 plane.

However, W; depends on X which is unknown in advance.
To resolve this problem, we assume that for every two adja-
cent iterations n — 1 and n during the minimization process,
IX;, — X, 1|2 is relatively small compared with || X, 1|2,
which means that we can use X, _; to approximate X,, to some
extent. Therefore, for every new iteration n, we can construct
the sparsity-promoting regularizer || X ||; using the current so-
Iution X, ;. Based on this, we redefine the weighting matrix
W) as follows to approximate L1-norm regularization, which is
termed as L1-like regularization:

1
— Xy(i 0
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where X, _; is the solution from the last iteration.

For the first few iterations of the minimization algorithm,
the solution X,, may vary rapidly, which violates our basic
assumption. To resolve this problem, Tikhonov regularization
is firstly used for several iterations to provide a rough initial
guess. The number of iterations can be set in advance using
empirical data or be determined dynamically depending on
IX — Xp—1ll2/1| X0 —1]]2- Then, L1-like regularization starts
from the initial guess to compute a sparse solution.

III. SIMULATION RESULTS

In this section, heterogeneous-simulation experiments were
conducted to verify the sparsity-promoting characteristic of the
proposed method. Fig. 1 shows the heterogeneous-cylindrical
phantom we used, which was of 20 mm in diameter and
20 mm in height. The phantom consisted of four kinds of ma-
terials, which is illustrated in Fig. 2, to represent muscle (M),
lung (L), heart (H), and bone (B), respectively. The optical pa-
rameters can be found in Table I, where subscripts x and m
denote the excitation and emission wavelengths, respectively.
The anisotropy parameter g was set to be 0.85. Three spherical-
fluorescent sources of 2 mm in diameter centered in z = 0 plane
were placed in the left and the right lungs. The fluorescent yield
was set to be 0.5.

Fluorescence measurement was implemented in transillumi-
nation mode. For each excitation source, which was modeled as
an isotropic point source located one-mean-free path of photon
transport beneath the surface in z = 0 plane, measurement of
the emitted fluorescence on the surface was taken from the op-
posite cylindrical side within 160° field of view (FOV), which is

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 10, OCTOBER 2010

\

\
fy
\

\M

(b)

Fig. 2. Slice images of the phantom in z = 0 plane. The black dots in (a) and
(b) represent the excitation point source locations. For each excitation location,
fluorescence is measured from the opposite cylindrical side within 160° field of
view.

TABLE I
OPTICAL PARAMETERS OF PHANTOM (UNIT: MM~ 1)

Material Haz Msz tam Hsm
Muscle  0.0849 427  0.0563 3.79
Lung  0.1918 21.72 0.1266 21.24
Heart 0.0574 9.62 0.0383 9.05
Bone 0.0594 2490 0.0393 23.40

illustrated in Fig. 2. It means that all the nodes on the cylindrical
side within this FOV were considered to be measurable.

The Newton method was adopted to iteratively compute the
solution. To provide an initial guess, the Tikhonov method was
used for the first ten iterations. Then, L1-like regularization
proceeded the reconstruction from the initial guess. The reg-
ularization parameter A% plays an important role in the FMT
reconstructions. However, finding the optimal A? is itself a very
challenging task and will not be covered in this letter. Instead,
we sampled the range between le-8 and le-13 which was suffi-
cient for this experiment, and performed reconstructions using
these sampled values. The best value for A was chosen by visual
inspection of the results and quantitative comparisons between
the reconstructed location errors.

In the first experiment, the fluorescence was excited by point
sources from 15 different locations in sequence, which is illus-
trated in Fig. 2(a). Measurements were taken every 24° and a
total of 15 datasets were acquired for the reconstruction of the
fluorescent yield. To show the merits of the proposed method,
L1-like regularization was compared with the Tikhonov method.
Fig. 3 shows the reconstruction results, which are presented in
the form of slice images in z = 0 plane and isosurfaces for 30%
of the maximum value. The small circles in the slice images de-
note the real positions of the fluorescent sources. From Fig. 3, we
can clearly see that the result obtained using the Tikhonov reg-
ularization is slightly over-smoothed with reduced intensities.
On the contrary, the L1-like regularization can better preserve
the sparsity of the fluorescent sources, and the reconstructed
intensities are greater.

Next, we reduced the amount of measurement data to simulate
a much worse case. This is possible when long-time measure-
ment is not appropriate or feasible. For instance, when imaging
small animals like mice, the artifacts caused by movements
must be taken into consideration. Besides, long-time measure-
ment can cause the bleaching effect of the fluorescent probes
and affect the accuracy of the reconstruction results. One way
to resolve this problem is to reduce the number of fluores-
cence measurements. This requires that we should be able to
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Fig. 3. Reconstruction results using 15 measurement datasets with Tikhonov
regularization (first row) and L1-like regularization (second row). These results
are presented in the form of slice images in z = 0 plane (left column) and
isosurfaces for 30% of the maximum value (right column). The small circles in
the slice images denote the real positions of the fluorescent sources.
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Fig.4. Reconstruction results using four measurement datasets with Tikhonov
regularization (first row) and L1-like regularization (second row). These results
are presented in the form of slice images in z = 0 plane (left column) and
isosurfaces for 30% of the maximum value (right column). The small circles in
the slice images denote the real positions of the fluorescent sources.

reconstruct the fluorescent sources from very limited data. It has
been shown in bioluminescence tomography that, by using L1-
norm regularization, satisfactory results can still be achievable
even with very limited imaging data [3]. Here, we only used four
measurement datasets, which is illustrated in Fig. 2(b). Fig. 4
shows the reconstruction results using Tikhonov regularization
and the proposed method. From these results, we can clearly
see that due to the badly ill-posed situation, the reconstruction
result from the Tikhonov method is seriously over-smoothed.
However, the proposed method can still preserve the sparsity of
the sources very well. This demonstrates the applicability of the
proposed method under more ill-posed conditions.

IV. CONCLUSION

In this paper, the SP3 approximation to RTE has been utilized
to model the photon transport within heterogeneous biological
tissues. Considering the sparsity characteristic of the fluores-
cent sources, we have proposed a sparsity-promoting regular-
ization method for the FMT reconstructions. This method is
based on an iteratively reweighted scheme, which can approx-
imate L1-norm regularization. The advantage of the proposed
method is that it can be easily incorporated into the existing it-
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erative reconstruction framework, and the extra work is merely
the construction of a diagonal weighting matrix at each itera-
tion, which is a relatively cheap operation. For the evaluation of
this method, heterogeneous-simulation experiments have been
conducted. Compared with the Tikhonov method, more reason-
able and satisfactory results can be obtained when using L 1-like
regularization, even with very limited measurement data. This
demonstrates the applicability of the proposed method for the
early detection of tumors, which are usually small and sparse
at this stage. Of course, there are situations in which the as-
sumption that the solution will be sparse cannot hold, e.g., a
large tumor or broadly distributed fluorescence signals, and the
proposed method may fail in those cases.

For FMT reconstruction, the choice of the regularization pa-
rameter will have a significant impact on the results. A large
parameter value can make the reconstructed solution deviate
from the real distribution, while a small value will have lit-
tle contribution to the regularization of the problem. Finding
the optimal or near-optimal regularization parameter automati-
cally still remains a challenging task. Generally speaking, two
strategies can be used: determining the parameter in advance or
updating it heuristically. This will be our future research.

In conclusion, we have developed a sparsity-promoting re-
construction method for FMT. Numerical simulations show the
merits of our method. In vivo mouse studies using the proposed
method will be reported in the future.
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