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Abstract: Multispectral bioluminescence tomography (BLT) attracts
increasing more attention in the area of small animal studies because mul-
tispectral data acquisition could help in the 3D location of bioluminescent
sources. Generally, BLT problem is ill-posed and a priori information is
indispensable to reconstruction bioluminescent source uniquely and quan-
titatively. In this paper, we propose a spectrally solved bioluminescence
tomography algorithm with an optimal permissible source region strategy.
Being the most different from earlier studies, an optimal permissible source
region strategy which is automatically selected without human intervention
is developed to reduce the ill-posedness of BLT and therefore improves the
reconstruction quality. Furthermore, both numerical stability and compu-
tational efficiency benefit from the strategy. In the numerical experiments,
a heterogeneous phantom is used to evaluate the proposed algorithm and
the synthetic data is produced by Monte Carlo method for avoiding the
inverse crime. The results demonstrate the feasibility and potential of our
methodology for reconstructing the distribution of bioluminescent sources.
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1. Introduction

The field of molecular imaging has gained considerable attention over the past few years due to
its ability to reveal the molecular and cellular information in vivo. Hence, it becomes an increas-
ingly important instrument for biomedical researchers to diagnose diseases, evaluate therapies,
and facilitate drug development with small animals such as mouse models [1, 2, 3, 4]. As a
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mode of molecular imaging, optical molecular imaging, especially bioluminescence tomogra-
phy (BLT), is outstanding because of its high performance, low cost and non-invasion [3, 5].
BLT is an emerging imaging technique which has been only recently developed to recover
bioluminescent source distribution inside a living small animal in 3D [4, 6].

The bioluminescent signal is emitted when luciferin is combined with luciferase in the pres-
ence of oxygen and ATP, and luciferase enzymes are generally from firefly (FLuc), click beetle
(CBGr68, CBRed), and Renilla reniformins (hRLuc) [7]. So signal has different emission spec-
tra, roughly from 400nm to 750nm, which can be detected using a sensitive low light imaging
systems, typically based on charge-coupled device (CCD) camera. Bioluminescent signal ob-
served on the surface of the small animal forms the basis for tomographic reconstruction of
internal bioluminescent source. However, three-dimensional (3D) bioluminescent reconstruc-
tion from boundary data is not unique and a highly ill-posed inverse problem in the general case
[5].

The uniqueness research of BLT shows that a priori information has a quite effect on source
reconstruction [5]. The commonly used priori information is the permissible source region
strategy. So far, a priori permissible source region strategy has been developed for BLT recon-
struction [8], which is inferred by the surface light power distribution and the heterogeneous
structure of the phantom. Although promising results have been reported [4, 6, 8], it is not
always reliable to infer such a permissible region especially when a single or multiple bio-
luminescent sources locate at half-radius or deeper depth from the small animal surface [9].
Recently, a posteriori permissible source region method has also been developed [9]. However,
it takes several hours to select the permissible source region in the case of complex heteroge-
nous phantom. Therefore, there is a critical need to establish a fast mathematical method for
selecting the permissible source region.

Aside from the permissible source region strategy, the spectral characteristic of biolumi-
nescent source can be considered as a priori information to improve BLT reconstruction
[9, 10, 11, 12, 13, 14, 15], so there is an increasing interest in multispectral bioluminescence
tomography. However, bioluminescent signal acquisition generally takes much longer time than
that for fluorescent imaging, one exposure normally needs 5 to 10 minutes if the biolumines-
cent source is deep inside a small animal [16]. Although the bioluminescent signal is generally
supposed to be stable in previous studies; in fact, it decays when the exposure time exceeds over
one hour [16]. Traditionally, to collect the whole surface images around the imaged object, a
rotating mechanism is employed to take four views (front, back, and two sides) [4, 6, 8, 16, 17].
So if we take all images in the multispectral case, one hour is not sufficient and it is possible
that the observed boundary data is inaccurate. Therefore, in the multispectral case, the exposure
time should be reduced with some methods. In addition, despite multispectral data acquisition
could enhance the reconstruction result, dimensional disaster also arises from multispectral
measurement and the large-scale data set seriously affects the reconstruction speed.

The development of a fast and robust BLT reconstruction algorithm based on practical appli-
cation to biological research is necessary. In practice, in view to physical limitations as X-ray
computed tomography (CT), the measurement for BLT is angle-limited and the acquired data
are often incomplete [18, 19]. In this situation, partial data acquisition methods such as the
single-view image technique could work. Recently, the feasibility of BLT with partial meas-
ured data has been proved theoretically and two reconstruction methods are extended to this
case, but they are time-consuming and need about 5−6 hours in a single wavelength case [19].
The reconstruction time should be longer in the multispectral imaging because the computation
data had increased rapidly.

Based on the consideration of above problems, we propose a reconstruction algorithm for
BLT from multispectral partial boundary measurement. The most distinct difference between
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current and earlier tomography algorithms is the development of an optimal permissible source
region strategy for reducing the ill-posedness of BLT, which is selected using iterative ap-
proach in combination of multispectral measurement without human intervention. In the algo-
rithm, partial boundary measured data is used to reduce the exposure time which arise from
multispectral measurement. Adaptive finite element algorithm is employed to reconstruct the
underlying source distribution based on diffusion equation approximation. Then the linear re-
lationship between the measured data and unknown source is established through the optimal
permissible source region concept. In the optimization procedure, a spectral projected gradient-
based optimization is used to reduce the reconstruction time and improve the robustness. In the
numerical experiments, a heterogeneous phantom is designed to evaluate the performance of
the algorithm. In the end, we discuss the relevant issues and conclude the paper.

2. Methods

2.1. Formulation of BLT

In bioluminescence imaging, it is important to depict the propagation of the photon transport
accurately in biological tissue. The bioluminescent photon is subject to both scattering and
absorption. However, in the 400nm−800nm wavelength range, photon scattering predominates
over photon absorption. When the bioluminescence imaging experiment is performed in a dark
environment, the propagation of photons can be described by the steady-state diffusion equation
and Robin boundary condition [8, 20, 21]. Taking the influence of light wavelength λ on tissue
optical property into account, the following model is given [9, 12]:

−∇ · (D(x,λ )∇Φ(x,λ ))+ μa(x,λ )Φ(x,λ ) = S(x,λ ) (x ∈ Ω) (1)

Φ(x,λ )+2A(x;n,n
′
)D(x,λ )(ν(x) ·∇Φ(x,λ )) = 0 (x ∈ ∂Ω) (2)

where Ω is a bounded smooth domain in the three-dimensional Euclidean space R 3 that contains
an object to be imaged; ∂Ω is the corresponding boundary; Φ(x,λ ) denotes the photon flux
density [Watts/mm2]; S(x,λ ) is the bioluminescent source density [Watts/mm3]; μa(x,λ ) is
the absorption coefficient [mm−1]; D(x,λ ) = 1/(3(μa(x,λ )+ (1− g)μs(x,λ ))) is the optical
diffusion coefficient, μs(x,λ ) the scattering coefficient [mm−1], and g the anisotropy parameter;
ν(x) the unit outer normal on ∂Ω. Given the mismatch between the refractive indices n for Ω
and n

′
for the external medium, A(x;n,n

′
) can be approximately represented:

A(x;n,n
′
) ≈ 1+R(x)

1−R(x)
(3)

where n
′

is close to 1.0 when the mouse is in air; R(x) can be approximated by R(x) ≈
−1.4399n−2 + 0.7099n−1 + 0.6681 + 0.0636n [22]. Supposed that the measurement is con-
ducted on some disjoint surface patches ϒ j ⊂ ∂Ω, j = 1,2, . . . ,M, each is smooth and con-
nected [19]. Let ϒ = ∪M

j=1ϒ j , the measured quantity is the outgoing flux density Q(x,λ ) on
partial boundary ϒ and it can be expressed:

Q(x,λ ) = −D(x,λ )(ν(x) ·∇Φ(x,λ )) =
Φ(x,λ )

2A(x;n,n′)
(x ∈ ϒ) (4)

2.2. The optimal permissible source region strategy

In the practical experiment, the light which can reach the body surface of the small animals
is separated into m bands τ1, . . . ,τm using appropriate filters, with τl = [λl−1,λl), l = 1,2, . . .,
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m−1, τm = [λm−1,λm]. Here λ0 < λ1 < .. . < λm is a partition of the spectrum range. Based on
the finite element theory [23], the weak solution of the flux density Φ(x,τ l) ∈ H1(Ω) on each
band τl is given through the Eqs. (1) and (2):
∫

Ω
(D(x,τl)(∇Φ(x,τl)) · (∇Ψ(x,τl))+ μa(x,τl)Φ(x,τl)Ψ(x,τl))dx

+
∫

∂Ω

1

2A(x;n,n′)
Φ(x,τl)Ψ(x,τl)dx =

∫
Ω

S(x,τl)Ψ(x,τl)dx (∀Ψ(x,τl) ∈ H1(Ω)) (5)

where H1(Ω) is the Sobelev space and Ψ(x,τl) is an arbitrary piece-wise test function. In the
framework of adaptive finite element analysis, let {T1, . . . ,Tk, . . .} be a sequence of nested tri-
angulation of the given domain Ω based on adaptive mesh refinement, where the sequence
gradually changes from coarse to fine along with the increase in k [6]. The space of linear finite
elements Vk are introduced on the discretized level Tk, satisfying V1 ⊂ . . .Vk ⊂ . . . ⊂ H1(Ω).
Now, we only consider the kth discretized level which includes NTk elements and NPk vertex
nodes. ψ k

1 , . . . ,ψk
NPk

is the nodal basis of the space Vk. Then Eq. (5) can be simplified as follow-

ing matrix form on the single-band τ l [6, 9]:

(Kk(τl)+Ck(τl)+Bk(τl))Φk(τl) = Fk(τl)Sk(τl) (6)

where the components of the above matrices Kk(τl), Ck(τl), Bk(τl), Fk(τl) are given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kk
i j(τl) =

∫
Ω D(x,τl)(∇ψk

i (x,τl)) · (∇ψk
j (x,τl))dx

ck
i j(τl) =

∫
Ω μa(x,τl)ψk

i (x,τl)ψk
j (x,τl)dx

bk
i j(τl) =

∫
∂Ω ψk

i (x,τl)ψk
j (x,τl)/(2A(x;n,n

′
))dx

f k
i j(τl) =

∫
Ω ψk

i (x,τl)ψk
j (x,τl)dx

(7)

Let Mk(τl) = Kk(τl)+Ck(τl)+Bk(τl), in view to Mk(τl) is a sparse positive definite matrix, we
have:

Φk(τl) = M−1
k (τl)Fk(τl)Sk(τl) (8)

Let Ak(τl) = M−1
k (τl)Fk(τl), by substituting Ak(τl) into the Eq. (8), we obtain the Eq. (9):

Φk(τl) = Ak(τl)Sk(τl) (9)

Generally, BLT problem is an ill-posed problem. One may consider to utilize the permissible
source region as a priori knowledge to improve the BLT reconstruction [6, 8]. In order to reduce
the ill-posedness of BLT, a novel optimal permissible source region strategy is developed by
using iterative approach based algorithm before BLT reconstruction. In the permissible source
region, the actual source may present and in the forbidden region, the actual source is zero
by definition. Commonly, the energy contribution of each spectral band τ l can be determined
by performing a beforehand spectral analysis, that is S(τ l) = ω(τl)S, where ω(τl) ≥ 0 and
∑m

l=1 ω(τl) ≈ 1, S denotes the total photon density. At the coarsest level (k = 1), the whole
reconstruction object Ω is assumed to be the permissible source solution S 1, taking into account
the above spectral distribution, based on Eq. (9), we have:

AT AS1 = AT Φ (10)

Where

A =

⎡
⎢⎢⎢⎣

ω(τ1)A1(τ1)
ω(τ2)A1(τ2)

...
ω(τm)A1(τm)

⎤
⎥⎥⎥⎦ ,Φ =

⎡
⎢⎢⎢⎣

Φ1(τ1)
Φ1(τ2)

...
Φ1(τm)

⎤
⎥⎥⎥⎦
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AT is the transpose of A and AT A is an mNT1 × mNT1 symmetric matrix, then Eq. (10) has
become a standard linear equation. Starting from an initial guess S 0

1, the solution S1 can be
updated iteratively by:

Sn+1
1 = Sn

1 + αnβn (11)

Where n is iteration number and βn is the gradient of each iteration,

βn = AT ASn
1 −AT Φ (12)

αn is the step size, in order to get αn, we construct a nonlinear least-squares optimization
problem:

J(S1) =
1
2
‖AT AS1−AT Φ‖ (13)

And
αn = argmin

α
J(Sn

1 −αβn) (14)

αn can be gotten by directly solving the Eq. (14), that is:

αn =
‖βn‖

‖A ·βn‖ (15)

In the iteration process, we directly use the measured data Φmeas
1 (τl) to substitute Φ1(τl),

because the effect of noise is low originally. With the increase of the number of iterations, the
permissible source region will become smaller and smaller. When ‖β n‖≤ δ or iteration number
n > Nmax, the iteration is terminated and the rough region of the optimal solution S ∗ is obtained,
that is Ω∗. We name it the optimal permissible source region and the sketch is shown in Fig.
1. Otherwise, S1 is updated by the Eq. (11). Here, Nmax is maximum iteration number and the
experiential typical value for δ is between 10−2 and 10−5. Generally, for Nmax and δ , we choose
500 and 5×10−3 for practical use, respectively.

Fig. 1. The sketch of searching optimal permissible source region.

In BLT, taking into account the real physical meaning, the source density constrain can be
taken as a priori information. Therefore, the nonnegative penalty is adopted during the iteration
process.

#95057 - $15.00 USD Received 16 Apr 2008; revised 26 May 2008; accepted 3 Sep 2008; published 19 Sep 2008

(C) 2008 OSA 29 September 2008 / Vol. 16,  No. 20 / OPTICS EXPRESS  15645



2.3. Source reconstruction

After establishing the optimal permissible source region, reformulate the Eq. (8): Φ k(τl) =
M−1

k (τl)Fk(τl)Sk(τl), taking the linear relation between the unknown source value S k and
boundary measured points Φmeas

k into consideration, we have:

Φmeas
k (τl) = Gk(τl)Sk(τl) (16)

Where Gk(τl) can be established by deleting the rows of [Mk(τl)−1Fk(τl)] corresponding to
unmeasured points. Incorporating the optimal permissible source region, we have:

Φmeas
k = GkWkSk (17)

Where

Φmeas
k =

⎡
⎢⎢⎢⎣

Φmeas
k (τ1)

Φmeas
k (τ2)

...
Φmeas

k (τm)

⎤
⎥⎥⎥⎦ ,Gk =

⎡
⎢⎢⎢⎣

ω(τ1)Gk(τ1)
ω(τ2)Gk(τ2)

...
ω(τm)Gk(τm)

⎤
⎥⎥⎥⎦

And Wk is a diagonal matrix for selecting the permissible region, that is:

Wk = Diag(wk(11),wk(22), . . . ,wk(ii), . . . ,wk(NPl
NPl

))

wk(ii) =
{

1 {sk(i) ≥ γksmax
k }

0 {sk(i) < γksmax
k }

When k = 1, sk(i) is the optimal solution S∗ and smax
k is its maximum. k ≥ 2, sk(i) and smax

k are
the reconstructed results prolonged from k−1th level and the corresponding maximum, that is

Sk = Ik
k−1Sk−1(k ≥ 2) (18)

where Ik
k−1 is the ratio operator from k−1 to k, γ k is the ratio factor, Sk−1 is the reconstruction

result on (k− 1)th level. By retaining the columns of GkWk corresponding to the permissible
region Sp

k , the final form of the linear system between the measurable boundary flux Φ meas
k and

Sp
k is obtained:

AkS
p
k = Φmeas

k (19)

Since the matrix Ak is a severely ill-conditioned matrix because of the ill-posedness of BLT,
the surface measured data is corrupted by noise, it is not practical to directly solve for S p

k from
linear system (19). Then the following kth objective function is established:

min
Sk

in f ≤Sp
k≤Sk

sup

Θk(S
p
k ) = {‖AkS

p
k −Φmeas

k ‖Λ + ρk · (Sp
k −Sinit

k )T (Sp
k −Sinit

k )} (20)

where sk
in f and sk

su f are the kth level lower and upper bounds of the source density; Λ is the

weight matrix, ‖V‖Λ = V T ΛV ; ρk the regularization parameter. Sinit
k is initial value at the kth

level. For BLT, Θk(S
p
k ) is a large-scale optimization problem with box-bound constrains, there-

fore, a spectral projected gradient-based large-scale optimization algorithm is modified to solve
the least square problem [9, 24, 25, 26]. In the algorithm, as for posteriori error estimation and
local mesh refinement, similar disposal methods are adopted according to [6, 9]. The current
gradient norm ‖gi

Θk
‖ and the iteration number Ni

k on each level are selected as switch condi-
tion indexes for triggering local mesh refinement. The discrepancy between the measured and
computational boundary nodal flux data and the number k of mesh refinement are used as stop
criterion. Finally, the flow chart of the algorithm is shown in Fig. 2.
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Fig. 2. The flow chart of the proposed algorithm.

3. Numerical simulation

As far as phantom is concerned, it plays an important role in evaluating reconstruction algo-
rithm and various phantoms have been designed for bioluminescence tomography. In previous
studies, the assumption of a homogeneous optical background had demonstrated the disadvan-
tage and limitation for BLT reconstruction [13]. It’s not proper and accurate to evaluate the
reconstruction algorithm.

Therefore, a heterogeneous phantom of 30mm height and 10mm radius was designed to eval-
uate the proposed algorithm [6]. It was made up of four ellipsoids and one cylinder to represent
muscle (M), lungs (L), heart (H), bone (B) and liver (Li), as shown in Fig. 3(a). Based on the
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Fig. 3. Heterogeneous phantom. (a) A heterogeneous phantom with Muscle, Bone, Heart,
Lungs, Liver and a single source in right lung. (b) The discretized mesh used in MOSE. (c)
The initial mesh used in reconstruction algorithm. (d) The cross-section, including Muscle,
Bone, Lungs and a source. The four arrows show the directions of the CCD camera.

Table 1. Optical property parameters in different wavelength range (Unit: mm−1) [9].

Wavelength
500−550nm 550−600nm 600−650nm 650−700nm 700−750nm

μa μ ′
s μa μ ′

s μa μ ′
s μa μ ′

s μa μ ′
s

Muscle 6.2e−4 1.34 2.5e−4 1.28 2.1e−4 1.22 3.4e−4 1.18 1.2e−3 1.14
Lung 2.7e−2 2.41 7.1e−3 2.30 2.0e−3 2.21 1.4e−3 2.12 2.8e−3 2.04
Bone 9.0e−3 3.34 2.2e−3 2.93 6.0e−4 2.61 3.6e−4 2.34 5.9e−4 2.21
Heart 9.1e−3 1.28 2.2e−3 1.13 6.9e−4 1.00 5.8e−4 0.91 1.4e−3 0.82
Liver 5.4e−2 0.83 1.2e−2 0.76 3.4e−3 0.70 2.0e−3 0.65 3.0e−3 0.60

emission spectral distribution, the spectrum [500nm−750nm] can be divided into five discrete
bins with steps of 50nm. In the experiments, the optical properties of each component are as-
sumed as priori information and optical property parameters of each bin are compiled in Table
1 [9].

Because BLT is an inverse source problem, it is necessary to acquire the surface measured
data objectively and reliably. In view to inverse crime, the synthetic data was produced by
molecular optical simulation environment (MOSE) which was developed using Monte Carlo
method [27]. In the single source simulation, the solid spherical source with 1mm radius and
source intensity of 0.238nano−Watts/mm3 was centered at (−3,5,15) inside the right lung as
shown in Fig. 3(a). In MOSE, the heterogeneous phantom was discritized by triangular elements
with an average element diameter of about 1mm, shown in Fig. 3(b). In the simulation, the
bioluminescent source of each band was sampled by 1.0× 10 6 photons and the default initial
guess S0

1 for searching the optimal permissible source region was set 0.01. When k = 1, the
ratio factor γ k = 0; k > 1, γk was initially set 10−1 for selecting permissible source region and
was changed by multiplying a factor of 10.0 with the increase of level k. In the optimization
process, sk

in f , sk
su f and Sinit

k are equal to 0.0, 10000 and 1.0× 10−5, respectively. The stopping

threshold εΦ and the maximum number of mesh refinement Kmax were set to 1.0× 10−8 and
3, respectively. Noted that in the reconstruction procedure, the initial discretization of phantom
was coarse volumetric mesh shown in Fig. 3(c). In terms of the present condition, a single-view
image technique is feasible for acquiring partial measured data. So in our simulations, the data
only from the front view shown in Fig. 3(d) is used in case of partial measurement.
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3.1. Experiment Results

3.1.1. Partial vs. complete measurement

Fig. 4. Reconstruction results. (a) Reconstructed result using monochromatic synthetic data
in [500nm,550nm] with partial measurement; (c) Spectrally resolved BLT reconstruction
with proposed algorithm; (e) Multispectral BLT reconstruction with the optimal permissi-
ble source region strategy and complete measurement; (g) Reconstruction result with the
method proposed in literature [9]; (b), (d), (f) and (h) are the magnified right lung images
of (a), (c), (e) and (g), respectively. The sphere is the actual source.

In the partial measurement experiment, the default initial guess S 0
1 was used. As for switch

condition indexes, the terminated gradient norm ε g and the maximum iteration number N max
k

were set to 1.0× 10−7 and 5000, respectively. ρk was 1.16× 10−9 at each level. First, using
partial measured data in [500nm,550nm], the optimal permissible source region was established
and the reconstruction was performed, corresponding result was shown in Fig. 4(a). Despite the
use of optimal permissible source region, the monochromatic measurement-based tomographic
reconstruction result was still undesirable no matter how we changed the initial guess S 0

1, δ , ρk

or maximum iteration number Nmax. However, using multispectral partial measured data, BLT
reconstruction showed preferable result with the proposed algorithm after one level refinement
and the result was shown in Fig. 4(c). By contrast, when complete measured data from four
views was used for selecting the optimal permissible source region, the corresponding result
was demonstrated in Fig. 4(e).

In order to qualify the results, both the absolute source position error (ε) and the rela-
tive source density error (ξ ) are defined: ε =

√
(x− x0)2 +(y− y0)2 +(z− z0)2, ξ = |Srecon −

Sreal |/Sreal , where (x,y,z) is the reconstructed center of source and (x0,y0,z0) is the actual
center of source. Srecon and Sreal are reconstructed source density and actual source density,
respectively, the unit is nano−Watts/mm3. Quantitative results about both the location and
density of source were shown in Table 2.

In order to compare with other algorithm, BLT reconstruction was also conducted with the
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Table 2. Quantitative comparison between the actual and reconstructed source centers and
energy densities with different methods. The unit of ε is mm.

Cases
Actual Reconstructed ε Actual Reconstructed ξ
postion positon density Density

Figure 4(a) (−3,5,15) (−1.01,6.88,12.58) 3.65 0.053 0.00125 97.6%
Figure 4(c) (−3,5,15) (−1.53,5.30,14.98) 1.50 0.238 0.224 6.25%
Figure 4(e) (−3,5,15) (−3.53,3.88,14.45) 1.36 0.238 0.227 4.85%
Figure 4(g) (−3,5,15) (−1.95,5.47,14.05) 1.49 0.238 0.1 57.9%

method proposed in literature [9], the result was demonstrated in Fig. 4(g) and quantitative
result in Table 2. Quantitative comparison shows that the proposed algorithm has a better per-
formance. Otherwise, the reconstruction speed is also a standard for evaluating algorithm. In
order to get the result in Fig. 4(g), the total time cost used the algorithm mentioned in literature
[9] was about 11 hours, but our method took much less time, about 3 hours. This was because
the system matrix at first level was reduced from 3350×6878 to 1690×5397 with the employ-
ment of partial measurement and the optimal permissible source region. These work was all
implemented on the same desktop computer with Pentium 4 3.4GHz and 1GB RAM.

From the above comparisons, it is obvious that the proposed algorithm can recover the bi-
oluminescent source distribution relative accurately. This means that the measured data can
be acquired only on part body of a small animal, and then the time for acquiring data can
be dropped. Meanwhile, the system matrix dimension can also be reduced. Furthermore, our
algorithm needs relative shorter reconstruction time and it is more appropriate for practical ap-
plication. Nevertheless, spectrally resolved BLT is indispensable and provides more sufficient
a priori information.

3.1.2. BLT reconstruction with noisy data

In order to evaluate the stability and robust of the proposed algorithm, noise effect was consid-
ered. In the experiment, white Gaussian noise with different level was added to the synthetic
data and corresponding reconstructions were carried out. The corresponding results were shown
in Fig. 5 and Table 3. The results reveal the stability of proposed algorithm under noise. When
the noise level is lower (5% and 10%), the method has a better performance not only in recon-
struction position but also source density. However, the noise level is higher (20% and 50%),
although the reconstructed source density is perturbed, the position is not affected. After we
have carried out intensive numerical simulation, we find two reasons to explain this. One rea-
son is that the noise effect is low originally for selecting the optimal permissible source region.
The other is that source reconstruction benefits from the adaptive from-coarse-to-fine mesh
sequence.

Table 3. Reconstruction results with the proposed algorithm under different noise data.

Noise level
Actual Reconstructed Actual Reconstructed ξ
position positon density density

5% (−3,5,15) (−1.53,5.30,14.98) 0.238 0.229 3.9%
10% (−3,5,15) (−1.53,5.30,14.98) 0.238 0.228 4.4%
20% (−3,5,15) (−1.53,5.30,14.98) 0.238 0.182 30.8%
50% (−3,5,15) (−1.53,5.30,14.98) 0.238 0.162 46.9%
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Fig. 5. Reconstruction results with the proposed algorithm under different noise data. (a)
Noise level was 5% noise, and for (c), (e), (g) was 10%, 20%, 50%, respectively; (b), (d),
(f) and (h) are the magnified right lung images of (a), (c), (e) and (g), respectively. The
sphere is the actual source.

3.1.3. Consideration of different initial guesses

It is well known that a big disadvantage of most iterative approach based algorithm is sensi-
tive to the initial guess (S0

1). It is regarded as a criterion to test the stability of the proposed
algorithm. Due to the limited space, representative results using different initial guesses of
iterative approach are given. When the initial guess was 0.01, the result had been reported,
shown in Fig. 4(c). When the initial guesses were set 0 and 0.1, the reconstructed results
all indicated the algorithm was stable and robust to initial guess. The results were shown in
Fig. 6 and Table 4. When the initial guess was equal to zero, the maximum reconstruction
density was 0.142nano−Watts/mm3. Although the density had a great difference with real
density, the recovered center position of bioluminescence source was satisfactory, that was
(−1.54,5.35,14.57).

Table 4. Quantitative reconstruction results using different initial guesses

initial Actual Reconstructed Actual Reconstructed
guess position position density density

0 (−3,5,15) (−1.54,5.35,14.57) 0.238 0.142
0.1 (−3,5,15) (−1.55,4.69,14.97) 0.238 0.198
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Fig. 6. Reconstruction results with the proposed algorithm in view of different initial
guesses. (a) initial guess S0

1 is zero and for (c) is 0.1; (b) and (d) are magnified right lung
images of (a) and (c), respectively. The sphere is the actual source.

3.1.4. Optical property errors consideration

Currently, with further investigation of BLT, multimodality imaging fusion has been become a
hot spot [4, 9, 13, 28]. Besides those, Diffusion Optical Tomography (DOT) is also appropriate
for BLT which can be used to acquire optical properties of mouse tissues. In previous
algorithms, optical property parameters of biomedical tissues were generally taken as a priori
information to reduce the ill-posedness of BLT and deal with the nonuniqueness of BLT
[5, 9, 12]. With DOT in combination with BLT, the problem can be solved. In view to the error
range of DOT reconstruction quantification accuracy [9, 29], ±50% errors for all tissues were
used to evaluate the proposed algorithm and reconstruction results were demonstrated in Fig.
7. The reconstructed position of source for −50% and +50% were (−3.34,3.87,14.08) and
(−1.64,5.55,15.18), respectively. The maximum absolute source position error is 1.50mm,
which accounts for the capability for tolerating optical property errors.

Fig. 7. Optical property errors consideration in the proposed algorithm. (a) The reconstruc-
tion result with +50% errors; (c) The reconstruction result with -50% errors; (b) and (d) are
the magnified reconstructed results with +50% and -50% errors, respectively. The sphere is
the actual source.

Furthermore, the possible effect of two sources closer together was studied. The two spherical
sources of 1.0mm radius and 0.238nano−Watts/mm3 power density were placed in the right
lung with edge-to-edge distance of 2mm. Reconstruction results were shown in Talbe 5. In the
case of +50% error for all tissues, the center position of two sources both had an offset of about
2mm, but the sources could be distinguished. However, when the error for all tissues is −50%,
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Table 5. Comparison between the actual and reconstructed source centers with optical prop-
erty errors. The unit of ε is mm.

Error Source Actual position Reconstructed position ε

+50%
S1 (−3,5,13) (−2.76,3.12,11.58) 2.36
S2 (−3,5,17) (−3.10,7.03,17.12) 2.04

−50%
S1 (−3,5,13) (−0.98,7.00,13.02) 2.82
S2 (−3,5,17) (−2.70,4.24,16.99) 0.82

the reconstructed center position of a source had a large offset and the two sources could not be
resolved. The effect of two sources with different edge-to-edge distances is necessary to further
explore.

4. Discussions and conclusion

Given the difficulty that there is no unique solution to the BLT problem in general case and the
need for fast BLT reconstruction algorithm, we have developed the novel optimal permissible
source region strategy and present a BLT reconstruction algorithm to identify a 3D biolumines-
cent source distribution, finally evaluate its performance in numerical simulation with quanti-
tative results. Simulation studies have indicated that the algorithm can exhibit very favorable
performance. In the reconstruction process, the optimal permissible source region has played
an important role to reduce the ill-posedness of BLT as well as enhance the numerical stability
and computational efficiency. In addition, in the case of hyper- and multi-spectral measure-
ment, the exposure time increases and dimension disaster arises. With the proposed algorithm,
the problems can be dealt successfully.

A challenge problem for BLT is the reconstruction speed. In the algorithm, an optimal per-
missible source region is firstly established before reconstruction, so reconstruction time and
memory cost are reduced. Secondly, adaptive finite element algorithm improves the reconstruc-
tion speed. Furthermore, the finite-element based reconstruction method makes it possible to
handle a more complex geometrical model such as the real mouse phantom. The heterogeneous
phantom experiments have illustrated that the method is fairly robust with respect to both strong
Gaussian noise and initial guess. More importantly, the data in the algorithm were produced us-
ing Monte Carlo-based method, and hence they are totally free of the well-known inverse crime
[8, 30]. Therefore, the presented algorithm can be properly evaluated. In the BLT prototype,
multimodality fusion such as DOT, Micro-CT and BLT has become a research hot spot. Taking
into account the high tolerance of optical property errors, the presented algorithm is suitable
for future multimodality BLT system. However, because the algorithm depends on multiple
factors, it is possible to get favorite results with try and error method and the optimal setting is
still under investigation. As measure of performance, we considered the difference of locations
of the center as well as the difference in intensity between the reconstructed and real source.
Our algorithm demonstrates a satisfactory performance in this case, however, considering the
difference in volume as well would be as important. In other words, there are remaining issues
needed to be considered.

In summery, we have presented a novel strategy for selecting the permissible source region,
and proposed a BLT reconstruction algorithm for practical application. It can provide a better
performance in view of reconstruction quality, robustness and speed. Now, we are making an
effort to construct a multimodality BLT system based on the proposed reconstruction algorithm,
the new system will provide the potential to enhance our understanding of disease and drug
activity during preclinical and clinical drug development, which could aid decisions to select
candidates that seem most likely to be successful or to halt the development of drugs that seem
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likely to ultimately fail [31]. Corresponding results will be reported later.
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