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a b s t r a c t

The quality of human silhouettes has a direct effect on gait recognition performance. This paper proposes
a robust dynamic gait representation scheme, frame difference energy image (FDEI), to suppress the
influence of silhouette incompleteness. A gait cycle is first divided into clusters. The average image of
each cluster is denoised and becomes the dominant energy image (DEI). FDEI representation of a frame
is constructed by adding the corresponding cluster’s DEI and the positive portion of the frame difference
between the former frame and the current frame. FDEI representation can preserve the kinetic and static
information of each frame, even when the silhouettes are incomplete. This proposed representation
scheme is tested on the CMU Mobo gait database with synthesized occlusions and the CASIA gait data-
base (dataset B). The frieze and wavelet features are adopted and hidden Markov model (HMM) is
employed for recognition. Experimental results show the superiority of FDEI representation over binary
silhouettes and some other algorithms when occlusion or body portion lost appears in the gait sequences.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Gait recognition aims to identify people at a distance by the way
they walk. It usually comprises four steps: video capture, silhou-
ette segmentation, feature extraction and recognition. Given a vi-
deo of a subject walking across the image plane, we are only
interested in the foreground walking subject. In order to eliminate
the impact of background and color or texture of the clothes, the
walking subject needs to be segmented from the background and
represented as a binary silhouette. The common segmentation
strategies rely on background subtraction (Elgammal et al., 2000;
Friedman and Russell, 1997) or grouping optic flow to find the
coherent motion (Tian and Shah, 1996; Yacob and Black, 1999). A
human body could not always be perfectly segmented from the
background, even if the video were of relatively good quality. Many
factors lead to inaccuracy in the silhouette segmentation, such as
the similarity of colors of the subject and background, illumination
change, moving objects in the background, the distance between
the camera and the person, occlusions and so on. These factors lead
to spurious pixels, shadows, holes inside moving subject, noisy
contours and incomplete silhouettes (body portion lost). These
low quality silhouettes need further processing to achieve high
recognition performance. When the silhouettes have small noisy
areas or holes, they can be removed by some morphological oper-
ations, such as dilation and erosion. Some algorithms deal with

more complicated noise, which can be divided into three
categories.

The first category is the reconstruction-based method. Liu et al.
proposed population hidden Markov models (HMM) to reconstruct
the silhouette (Liu et al., 2004; Liu and Sarkar, 2005). The popula-
tion HMM helps to map a frame in any given sequence to a stance
and an appearance-based Eigen-Stance model is used to recon-
struct the computed silhouette in the frame. This method can
reconstruct silhouettes visually appealing and robust to viewpoint
variation, but the lost of characteristics possessed by a single sub-
ject deteriorate recognition performance.

The second category focuses on aligning the contours. Yu et al.
made use of improved dynamic time warping (IDTW) to reduce the
effect of noise on human contours (Yu et al., 2007). A point on a
contour is aligned to multiple points on another contour using tra-
ditional DTW. Only the pair with the shortest distance is kept and
other pairs which have a common point are discarded in the IDTW.
This method improves the recognition performance.

The third category is the robust static representation, which
compresses a gait cycle into one or several static images. Han
and Bhanu proposed the gait energy image (GEI), which is the aver-
age image of a gait cycle to characterize human walking properties
(Han and Bhanu, 2006). When the noise at different moments is
uncorrelated and identically distributed, GEI was found to be less
sensitive to silhouette noise in individual frames. The performance
of GEI is notable, but this representation loses detailed information
and does not contain temporal variation. The gait history
image (GHI) (Liu and Zheng, 2007) and gait moment image (GMI)
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(Ma et al., 2007) were developed based on GEI. GHI preserves the
temporal information besides the spatial information. It overcomes
the shortcoming of no temporal variation in GEI. However, each cy-
cle only obtains one GEI or GHI template, which easily leads to the
problem of insufficient training cycles. GMI is the gait probability
image at each key moment of all gait cycles. The corresponding gait
images at a key moment are averaged as the GEI of this key mo-
ment. However, it is not easy for GMI to select key moments from
cycles with different periods.

The low quality silhouette segmentation with body portion lost
deteriorates the recognition performance. The reconstruction-
based methods use common characteristics of the population to
reconstruct visual appealing silhouettes, however, it does not im-
prove the recognition performance. The method of aligning the
contours fails when considerable shape change occurs. The static
representations are robust to shape change in some frames, but
they lose too much dynamic and detailed information. In this pa-
per, a robust dynamic gait representation scheme, the frame differ-
ence energy image (FDEI), is proposed to suppress the effect of
silhouette incompleteness. A gait cycle is divided into clusters
and the dominant energy image (DEI) is obtained by denoising
the averaged image of each cluster. The frame difference is calcu-
lated by subtracting two consecutive frames. The FDEI representa-
tion of a frame is constructed as the summation of its
corresponding cluster’s DEI and the positive portion of its frame
difference, which embodies both static and kinetic information.
To evaluate the new representation, experiments are carried out
on the CMU Mobo gait database (Gross and Shi, 2001) with synthe-
sized occlusions and the CASIA gait database (dataset B). Frieze fea-
ture (Liu et al., 2002) and wavelet feature are extracted from the
original binary silhouette and the FDEI representation, respec-
tively. HMM is used to train models and gives the recognition
results.

The rest of this paper is organized as follows. In Section 2, we
describe the silhouette preprocessing and the proposed FDEI gait
representation in detail. Section 3 introduces the HMM-based gait
recognition method. The experiment results on the CMU Mobo gait
database with synthesized occlusions and the CASIA gait database
(dataset B) are presented and analyzed in Section 4. Section 5 offers
our conclusion.

2. Frame difference energy image (FDEI) representation

The FDEI representation is constructed on the preprocessed sil-
houette sequences. In this section, we first introduce the silhouette
extraction and preprocessing methods and then present how to
construct the FDEI representation.

2.1. Silhouette extraction and preprocessing

The silhouette is usually extracted by finding the difference be-
tween the background and current image (Elgammal et al., 2000;
Friedman and Russell, 1997) or grouping optic flow to find the
coherent motion (Tian and Shah, 1996; Yacob and Black, 1999).
There are inevitably spurious pixels, holes inside moving subject
and other anomalies in the detected sections. Mathematical mor-
phological operations, such as erosion and dilation, are widely used
to remove spurious pixels and fill small holes inside the extracted
silhouettes. To eliminate the size difference caused by the varying
distance between the subject and camera, the silhouettes are usu-
ally height scaled and centered. Even if the original images were of
good visual perception, some inaccuracy may not be repaired by
mathematical morphological operations. Silhouette incomplete-
ness caused by body portion lost has a greater effect on recognition
than other errors, such as shadows and spurious pixels. When the

heads or feet are missing, height scaling will cause serious shape
distortion. Fig. 1 shows some sample images of the background
images, original images, raw silhouettes and preprocessed silhou-
ettes. The first row of Fig. 1 is sample images of CMU Mobo gait
database and the other three rows show sample images of CASIA
gait database (dataset B). The first and second rows are good sil-
houette extraction sample images. The last two rows illustrate
imperfect silhouette extraction and the preprocessed silhouette
in the fourth row appears with a large shape distortion after align-
ing the height.

2.2. FDEI representation construction

Gait recognition depends on two types of information: shape
information (static information) and dynamic information. Shape
information refers to the appearance, such as body height, width,
body-part proportions, hair, hunching, dressing, taking a package
or ball and so on. Some shape information remains unchangeable
or similar during people walking. Generally speaking, information
extracted from a single frame belongs to shape information. Dy-
namic information characterizes the motion changes of the human
body regardless of the underlying structure, such as joint-angles
trajectories of the lower limbs (Wang et al., 2004), shape-of-mo-
tion features obtained by optical flow (Little and Boyd, 1998) and
so on. Experiments with portions of the average silhouette repre-
sentation showed that recognition power is not entirely derived
from upper body shape; rather the dynamics of the legs also con-
tribute equally to recognition (Nixon and Carter, 2006).

An effective gait representation should embody shape and dy-
namic information and be robust to imperfect silhouettes. Silhou-
ette incompleteness tends to be more intractable and harmful
than other errors. Here, we propose a new robust dynamic repre-
sentation scheme, the FDEI. The main motivation of the proposed
FDEI representation is to suppress the effect of the silhouette
incompleteness while keeping most of the shape details and con-

Fig. 1. Sample images of human silhouettes and their preprocessed silhouettes: the
first column is of the background images; the second column is of the original
images; the third column is the raw silhouettes; the fourth column is of the
preprocessed silhouettes.
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taining the temporal variation. The incompleteness of a certain
frame cannot be repaired by itself but may be compensated by
other frames to recover the shape information. We first divide a
gait cycle into clusters and denoise the averaged image of each
cluster to become the DEI. In order to characterize each frame,
the frame difference is calculated as the subtraction of two consec-
utive frames. The positive portion of the frame difference contains
the motive pixels and any incomplete parts. The FDEI representa-
tion of a frame is constructed as the summation of its correspond-
ing cluster’s DEI and the positive portions of its frame difference.

We follow the steps below to construct the FDEI representation
of a gait sequence.

Step 1: Clustering and calculating GEI. The silhouettes of a gait
cycle are clustered. The cluster number is chosen according to the
average distortion (Kale et al., 2002), which decreases with the in-
creased cluster number. If the average distortion does not change
appreciably beyond certain number, it can be selected as the clus-
ter number. When representing the gait cycle with smaller number
clusters, some useful information loses. The larger cluster number
leads to great computation complexity, but has little improvement
on the recognition performance. Any suitable clustering algorithm
can be used. We simply divide the silhouettes into temporally
adjacent clusters of approximately equal number of frames. Differ-
ent clusters have different stance, such as feet adjacent, toe off,
heel rise and so on. The GEI of the cth cluster, Gcðx; yÞ, is computed
as Han and Bhanu (2006):

Gcðx; yÞ ¼
1

Nc

X
t2Ac

B x; y; tð Þ; ð1Þ

where t is moment of time, Ac represents the time set of silhouettes
in the cth cluster, Nc is the number of frames in the cth cluster, x and
y are coordinates in the 2D image and Bðx; y; tÞ is the silhouette at
time t.

Step 2: Denoising. The GEI of the cth cluster Gcðx; yÞ is denoised
as:

Dc x; yð Þ ¼
Gc x; yð Þ; if Gc x; yð ÞP T;

0; otherwise;

�
ð2Þ

where Dcðx; yÞ is the denoised image of Gcðx; yÞ. The threshold T var-
ies with different cycles or subjects, depending on the quality of the
silhouettes. The quality of the silhouettes is difficult to be measured
automatically. Also it is not practical to manually label it for each
cluster of each gait cycle. We experimentally choose the value T
as maxðGcÞ � 0:8 for each cluster in the following gait recognition
experiments. We name the denoised image Dcðx; yÞ as the DEI.

Step 3: Calculating the positive portion of frame difference. The
frame difference is computed as the subtraction of silhouettes
Bðx; y; t � 1Þ and Bðx; y; tÞ. The positive portion Fðx; y; tÞ is obtained
by setting the negative pixel values of the frame difference to zero,
as expressed in Eq. (3)

F x; y; tð Þ ¼
0; if B x; y; tð ÞP B x; y; t � 1ð Þ;
B x; y; t � 1ð Þ � B x; y; tð Þ; otherwise:

�

ð3Þ

When t ¼ 1, Bðx; y; t � 1Þ is set to the last frame of the cycle. If
Bðx; y; tÞ is incomplete and Bðx; y; t � 1Þ is complete, Fðx; y; tÞ will
contain the missing and movement portions. Otherwise, it only
embodies the movement portions.

Step 4: Constructing FDEI. We define the FDEI as the summation
of the positive portion of the frame difference and the correspond-
ing cluster’s DEI, as expressed in Eq. (4). The summation FDðx; y; tÞ
is regarded as the FDEI representation of Bðx; y; tÞ

FD x; y; tð Þ ¼ F x; y; tð Þ þ Dc x; yð Þ: ð4Þ

When Bðx; y; tÞ is incomplete and Bðx; y; t � 1Þ is complete, the
incomplete portions of the frame are contained in Fðx; y; tÞ. When
both Bðx; y; tÞ and Bðx; y; t � 1Þ are incomplete, Dcðx; yÞ can partially
compensate the missing portions. The FDEI representation helps to
suppress the effect of the missing portions and preserve the char-
acteristics of Bðx; y; tÞ. Fig. 2 demonstrates some images during the
construction of FDEI, when both Bðx; y; tÞ and Bðx; y; t � 1Þ are
incomplete. The first two images of Fig. 2 show silhouettes
Bðx; y; tÞ and Bðx; y; t � 1Þ, respectively. The positive portion of the
frame difference (Fig. 2c) shows the movement portion of
Bðx; y; tÞ. The GEI of the cluster containing Bðx; y; tÞ is shown as
Fig. 2d, which contains some weak information. The DEI (Fig. 2e),
which embodies the dominant energy of the GEI, is obtained by
denoising the GEI. Fig. 2f is the FDEI representation of Bðx; y; tÞ.
Comparing Fig. 2f with Fig. 2a, it can be seen that the FDEI repre-
sentation contains the movement portion and partially compen-
sates the incompleteness of Bðx; y; tÞ.

3. HMM-based gait recognition

HMM has been the dominant technology in speech recognition
since the 1980s’. HMM provides a very useful paradigm to model
the dynamics of speech signals. Gait is similar with speech in
time-sequential space. HMM was introduced to gait recognition
in recent years (Kale et al., 2002; Sundaresan et al., 2003) and
gained inspiring performance. Since then, more gait recognition
papers (Liu et al., 2004; Chen et al., 2006; Cheng et al., 2008) based
on HMM have appeared. HMM-based gait recognition methodol-
ogy is preferable to other techniques since it explicitly takes into
consideration not only the similarity between shapes in the test
and reference sequences, but also the probabilities with which
shapes appear and succeed each other in a walking cycle of a spe-
cific subject (Boulgouris et al., 2005).

Fig. 3 shows the topological representation of an HMM. The
parameters of HMM k ¼ ðA;B;pÞ are initialized and trained as men-
tioned in (Chen et al., 2006). The whole recognition process con-
tains three steps:

Step 1: Initializing. The feature vectors fftg of each cycle are di-
vided into C clusters. ec denotes the center of the cth cluster Cc and
is regarded as an exemplar. The initial transition probability matrix
A ¼ fai;j; i ¼ 1 � � � C; j ¼ 1 � � �Cg only allows current state equally
transforming to itself and its next state, that is, ai;i ¼ ai;iþ1 ¼ 0:5.
The observation symbol probability B ¼ fbcðftÞg is an exponential

Fig. 2. Sample images during the construction of FDEI: (a) an incomplete silhouette
at t; (b) the silhouette at t � 1; (c) the positive portion of the frame difference; (d)
the GEI; (e) the DEI; (f) the FDEI of (a).
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function of the inner product distances of the feature vectors and
the exemplars

bc ftð Þ ¼ adce�dc D ft ;ecð Þ; ð5Þ

where Dðft; ecÞ is the inner product distance of ft and ec , a is a con-
stant less than 1 and dc is defined as:

dc ¼
NcP

ft2Cc
D ft ; ecð Þ ; ð6Þ

where Nc is the number of frames of the cth cluster Cc . The initial
probabilities pc are set to be 1

Nc
.

Step 2: Training. Viterbi algorithm is used to get the most prob-
able path, from which the new exemplars are obtained. Then the
new observation symbol probability is calculated from Eqs. 5 and
6. Given the new observation symbol probability, the new transi-
tion probability and initial probability can be updated using
Baum-Welch algorithm. This process iterates a few times to obtain
the acceptable parameters.

Step 3: Recognition. The observation symbol probability of the
probe sequence is calculated using the exemplars of the training
sequence. Other parameters retain the same with the training se-
quence. The similarities are calculated using Viterbi algorithm.
The recognition result corresponds to the largest similarity.

4. Numerical experiments

The FDEI representation aims to reduce the influence of incom-
plete binary silhouettes. In order to evaluate the new representa-
tion method, we tested it on the indoor CMU Mobo gait database
with synthesized occlusion and the CASIA gait database (dataset
B). Two features are separately extracted to train the HMM. The
first one is the frieze feature, which is constructed by stacking
row projections (Liu et al., 2002). The frieze feature Fðy; tÞ of binary
silhouette Bðx; y; tÞ is defined as:

Fðy; tÞ ¼
X

x

Bðx; y; tÞ: ð7Þ

The frieze feature is smoothed to eliminate spurious pixels. Fig. 4
shows the frieze feature of Fig. 2f and its smoothed one. Another
adopted feature is the wavelet feature. A two-dimensional wavelet
transform is applied to the images using Haar wavelet bases. The

wavelet coefficients of the approximation sub-image include the
most useful information and are chosen as the wavelet feature.

4.1. CMU Mobo gait database with synthesized occlusion

The CMU Mobo gait database consists of sequences from 25
subjects walking on a treadmill, positioned in the middle of a room.
Each subject is recorded performing four different types of walk-
ing: slow walk, fast walk, slow walk holding a ball, and a walk
on an inclined plane. Each sequence is recorded 11 s long, recorded
at 30 frames per second. The sequences caught by the frontal-view
camera are adopted in following experiments. Fast walk sequences
are chosen as the gallery and slow walk sequences as the probe set.

We simulate the occlusion situations by adding horizontal or
vertical bars to the gallery. The bars have the same color as the
background. A horizontal or vertical bar is added to a gallery sil-
houette with the probability varying from 10% to 100%. The adding
bar probability represents the percentage of frames with bars in
the gait sequence and is denoted as BP hereafter in the figures.
The position of the added bar is uniformly distributed within the
silhouette height or width. Fig. 5 displays sample images of simu-
lated horizontal and vertical occlusions with variable bar width.

After adding bars to the gallery, gait recognition experiments
based on HMM are conducted to compare the FDEI representation
and the original binary silhouette. Two features, the frieze and
wavelet features, are extracted from the FDEI and the original sil-
houette, respectively. Therefore, four experiments are carried out,
i.e., frieze feature from binary silhouette (frieze(BI)), frieze feature
from FDEI (frieze(FD)), wavelet feature from binary silhouette
(wavelet(BI)) and wavelet feature from FDEI (wavelet(FD)). Given
the adding bar probability and bar width, we repeat each experi-
ment 5 times and the recognition results are averaged to reduce
the statistical error.

Fig. 6 shows the identification rates when adding horizontal
bars. The horizontal bar width varies from 40 to 100 pixels with
step size of 20 pixels. The recognition rates of adding vertical bars
are shown in Fig. 7, where the vertical bar width changes from 20
to 50 pixels with step size of 10 pixels. For a given bar width, the
adding bar probability BP increases from 10% to 100%. The average
recognition rates over BP are presented in Tables 1 and 2. Based on
Figs. 6, 7, Tables 1 and 2, we come to the following conclusions.

First of all, for the synthesized occlusion data, gait recognition
using the FDEI representation directly outperforms the original

Fig. 3. Topological representation of an HMM.
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Fig. 4. The curves of the frieze feature: (a) the frieze feature of Fig. 2f; (b) smoothed
frieze feature of (a).

Fig. 5. Illustration of synthesized occlusions: (a)–(d) Horizontal bars with width of
40, 60, 80 and 100 pixels; (e)–(h) Vertical bars with width of 20, 30, 40 and 50
pixels.
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binary silhouette. This is clearly demonstrated in Tables 1 and 2
where all the average recognition rates of FDEI are higher than
their counterparts of using the original binary silhouette, despite
the feature or the occlusion bar width. Fig. 6 shows that, under
the horizontal bar occlusion situations, the FDEI representation

with frieze feature or wavelet feature (frieze(FD) or wavelet(FD))
has similar performance to the original binary silhouette using
wavelet feature (wavelet(BI)). However, recognition using the bin-
ary silhouette with frieze feature is greatly deteriorated by the
occlusions. For the vertical occlusions, as shown in Fig. 7, the FDEI
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Fig. 6. Identification rate vs. adding horizontal bars probability: (a)–(d) represent
the curves with a bar width of 40, 60, 80 and 100 pixels, respectively.
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Fig. 7. Identification rate vs. adding vertical bars probability: (a)–(d) represent the
curves with a bar width of 20, 30, 40 and 50 pixels, respectively.
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representation is obviously superior than the binary silhouette,
regardless of the frieze or wavelet features used.

Secondly, the wavelet feature performs better than the frieze
feature under most circumstances, especially when using the FDEI
representation. The wavelet feature describes the holistic informa-
tion of the original information and tends to be more credible.
However, its recognition performance is more sensitive to the add-
ing probability of vertical bars than that of the frieze feature.

Thirdly, the recognition rates fluctuate and do not decrease
absolutely when the adding bar probability increases. However,
the wider the occlusion, the FDEI representation shows more supe-
riority to the binary silhouettes. When the width of the horizontal
bars increases, the average recognition rates of frieze(BI) drop from
73.2% to 62.7% and those of frieze(FD) fluctuate around 78%. When
vertical bars are added, the average recognition rates of wave-
let(BI) vary from 72.6% to 78% and those of wavelet(FD) vary from
81.4% to 83.4%.

We also compare the proposed method with GEI, GHI, GMI and
IDTW, whose results are shown in Tables 3 and 4. Linear discrim-
inant analysis is used to calculate the recognition results of GEI,
GHI and GMI. GEI performs much better than GHI and GMI for both
horizontal and vertical bars. Although IDTW is proved to reduce
the effect of noise on human contour, this algorithm does not per-
form well with synthesized occlusion. When horizontal or vertical
bars are added, the contour is composed of two separate parts and
IDTW cannot efficiently reduce the effect of noise under such cir-
cumstance. The performance of wavelet(FD) is the best among
the five algorithms.

4.2. CASIA gait database

The proposed FDEI representation is also tested on CASIA gait
database (dataset B), which contains 124 subjects (93 males and
31 females) captured from 11 view angles. There are six normal
walking sequences for each subject per view. Many silhouettes in
CASIA gait database (dataset B) are incomplete after background
subtraction. We visually examine the database to get a quantitative
evaluation of the silhouette quality. To alleviate labor intensity,

only the gait sequences of angle 36 are inspected. We visually
check the silhouettes after cycle detection and count the number
of severely incomplete silhouettes. We only count the silhouettes
lost head or feet portion because, following the aligning operation,
these incomplete silhouettes cause considerable shape distortions.
The silhouettes lost body portion but kept their height are not ta-
ken into account. Some incomplete examples are shown in the first
row of Fig. 8. Their corresponding foregoing frames and FDEIs are
illustrated in the second and third rows of Fig. 8, respectively.

We visually inspect the gait silhouette quality of the CASIA data-
base. For simplicity, only view angle 36 is evaluated and the result is
shown in Table 5. The number of severely incomplete frames are
counted and divided by the training frames to find the percentage
of incomplete frames. Among the 124 people, only 30 people have
less than 5% incomplete frames. About half of the people have
10–25% incomplete frames. Only 14 people have more than 30%

Table 1
The average recognition rate (%) vs. horizontal bar width.

40 60 80 100

BI FD BI FD BI FD BI FD

Frieze 73.2 80.2 73.7 78.2 66.1 78.3 62.7 75.5
Wavelet 78.8 79.5 78.6 81.4 71.6 80.3 78.5 80.3

Table 2
The average recognition rate (%) vs. vertical bar width.

20 30 40 50

BI FD BI FD BI FD BI FD

Frieze 78.4 80.2 78.0 80.0 77.6 79.4 75.6 79.2
Wavelet 78 83.4 75 83.2 72.8 82.2 72.6 81.4

Table 3
The average recognition rate (%) of different algorithms vs. horizontal bar width.

Method 40 60 80 100

IDTW 64 60.2 62.4 63.2
GEI 79.6 80.6 81 79.6
GHI 54.4 54.4 57.8 53.4
GMI 46.0 46.4 46.4 39.6
Wavelet(FD) 79.5 81.4 80.3 80.3

Table 4
The average recognition rate (%) of different algorithms vs. vertical bar width.

Method 20 30 40 50

IDTW 66.2 67.3 65.8 66.4
GEI 81 82 82 80.6
GHI 52.8 54.6 56 56.2
GMI 48.8 50.8 46.4 48.4
Wavelet(FD) 83.4 83.2 82.2 81.4

Fig. 8. Examples of incomplete silhouettes in CASIA gait database and their FDEI:
(a)–(e) examples of incomplete silhouettes; (f)–(j) the foregoing frames corre-
sponding to the silhouettes in the first row; (k)–(o) the FDEI of the silhouettes in the
first row.

Table 5
The silhouette quality evaluation for view angle 36 of the CASIA gait database (dataset
B).

Percentage of incomplete frames Subject number

0–5 30
5–10 31
10–15 23
15–20 16
20–25 10
25–80 14
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incomplete frames. When the incomplete frames happen inconsec-
utively in the gait sequence, they do not affect recognition much.
However, in practice, incomplete frames often appear consecu-
tively, which may severely deteriorates recognition performance.

The experiments are carried out for all view angles of the CASIA
gait database (dataset B). The first four sequences are used for
training, and the last two are placed into the probe set. The results
are also compared with GEI, GHI, GMI and IDTW. Table 6 shows the
correct classification rates (CCRs) at rank 1. The performance at an-
gles 0 and 180 is better than at other angles. GEI performs much
better than GHI and GMI, but little worse than IDTW. Wavelet(FD)
has the best recognition rates for most angles and reaches 100% for
the first three angles. Frieze(FD) performs better than IDTW except
at angles 36, 144 and 162. IDTW performs better than wavelet(BI)
except at angle 108 and frieze(BI) shows the worst performance.
The cumulative match score (CMS) curves are illustrated in
Fig. 9, which give the average CCR of all angles from rank 1 to rank
10. Most of the curves are not crossed except those of IDTW and
GEI. It can be seen that none of these algorithms performs better
than FDEI, no matter frieze or wavelet feature are extracted.

In order to obtain the quantitative superiority of the proposed
FDEI representation over binary silhouette, we further employ
McNemar’s test. McNemar’s test is a first order check on the statis-
tical significance of an observed difference in recognition perfor-
mance. The times of success/failure trials of the compared
algorithms are used to calculate the confidence limits and produce

the evaluation results. McNemar’s test is generally more compre-
hensive and reliable than the CMS curve to compare two algo-
rithms. The two given algorithms, A and B, are compared. Four
numbers, Nss, Nsf , Nfs and Nff , can be obtained, which represent
the times of both algorithms succeed, algorithm A succeeds but B
fails, algorithm A fails but B succeeds and both algorithms fail,
respectively. Then a Z-value is calculated as follows:

Z ¼
jNsf � Nfsj � 1
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsf þ Nfs

p : ð8Þ

Confidence limits can be obtained by looking up the Z-value in the
standard normal distribution table. Detailed information of McNe-
mar’s test refers to Clark and Clark (1999).

Gait sequences of three view angles, 72, 90 and 162, are chosen
and 15 experiments are carried out for each of the three angles per
person. The wavelet and frieze features are used separately. The
performances of McNemar’s test are displayed in Table 7. It can
be obtained from the table that the FDEI representation performs
absolutely better than the binary silhouettes, despite the angle or
feature. Although the confidence limits are all 100%, their differ-
ence is embodied in the Z-values. A higher Z-value of the FDEI rep-
resentation indicates its superiority over the binary silhouette
under all circumstances.

The foregoing numerical experiments testify that the FDEI rep-
resentation is robust to the incompleteness of the gait silhouettes.
Compared with some other algorithms, it has much better perfor-
mance. The results also illustrate that the wavelet feature performs
better than the frieze feature.

5. Conclusion

In this letter, we propose a robust dynamic gait representation
scheme, frame difference energy image (FDEI), to lower the influ-
ence of silhouette incompleteness. The gait shape aspects are
embodied by the DEI, whereas the dynamic aspects are the positive
portions of the frame difference. The proposed representation
keeps most of the shape details and the gait temporal variation.
Experimental results of both synthesized and real databases testi-
fied that the FDEI is a feasible gait representation. It gives better
and more stable results than the binary image despite which fea-
ture is used. It also shows its superiority over other noise-insensi-
tive algorithms, such as GEI, GHI, GMI and IDTW. The FDEI
representation has a promising performance when occlusion or
incompleteness occurs in the silhouettes.
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Table 6
The average recognition rates (%) of all the view angles.

Method 0 18 36 54 72 90 108 126 144 162 180 Avg.

IDTW 93.5 84.7 85.9 80.2 83.9 83.5 73.0 80.6 89.9 90.7 92.7 85.3
GEI 91.1 86.3 71.8 66.1 90.3 83.1 78.2 79.0 90.3 88.7 89.9 83.2
GHI 71.8 62.1 48.4 41.9 80.4 71.8 54.0 64.5 66.1 54.0 68.5 62.1
GMI 68.5 56.4 52.4 48.4 66.1 60.4 54.0 55.6 51.6 59.6 62.9 57.8
Frieze(BI) 95.2 61.3 48.4 48.4 58.1 79.8 64.5 49.2 55.6 71.8 84.7 65.2
Frieze(FD) 95.2 84.7 84.7 93.5 90.3 91.1 86.3 84.7 85.5 88.7 95.2 89.1
Wavelet(BI) 89.5 83.1 75.8 73.4 78.2 77.4 77.4 70.2 70.2 75.8 85.5 77.9
Wavelet(FD) 100 100 100 93.4 81.1 90.3 90.3 86.3 91.9 91.9 97.6 93.9
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Fig. 9. Average CMS curves of all view angles.

Table 7
Performance comparison of the FDEI representation and the binary silhouette.

Methods Angle Nss Nsf Nfs Nff Z-value Confidence (%)

Frieze(FD) 72 1179 601 20 60 23.0894 100
Vs. 90 1647 124 35 54 6.9789 100
Frieze(BI) 162 1425 246 52 137 11.1802 100

Wavelet(FD) 72 1514 284 17 45 15.3320 100
Vs. 90 1743 82 5 30 8.1481 100
Wavelet(BI) 162 1490 234 17 119 13.6338 100
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