
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

  
Abstract—Bioluminescence tomography is a promising tool in 

preclinical research, enabling noninvasive real-time in vivo 

imaging as well as quantitative analysis in small animal studies. 

Due to the difficulty of reconstruction, continuous efforts are still 

made to find more practical and efficient approaches. In this 

article, we present an iterative reweighted l2 norm optimization 

incorporating anatomical structures in order to enhance the 

performance of bioluminescence tomography. The structure priors 

have been utilized to generate a heterogeneous mouse model by 

extracting internal organs and tissues, which can assist in 

establishing a more precise photon diffusion model, as well as 

reflecting a more specific position of the reconstruction results 

inside the mouse. To evaluate the performance of the iterative 

reweighted approach, several numerical simulation studies 

including comparative analyses and multi-source cases have been 

conducted to reconstruct the same datasets. The results suggest the 

proposed method is able to ensure the accuracy, robustness, and 

efficiency of bioluminescence tomography. Finally, an in vivo 

experiment was performed to further validate its feasibility in a 

practical application.  

 
Index Terms—Optical molecular imaging, bioluminescence 

tomography, hybrid imaging, 3-D reconstruction.  

 

I. INTRODUCTION 

ptical molecular imaging has played an increasingly 

important role in revealing the dynamic interactions of 

cel lular  processes at  different system levels [1-4]. 

Bioluminescence imaging is one of the various modalities of  
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optical molecular imaging, which has attracted considerable 

attention because of its high sensitivity and low cost. It utilizes 

an ultra-sensitive CCD camera to detect light emitted by living 

cells expressing a luciferase gene, allowing researchers to 

monitor cell growth and to localize tumors in small animals 

[5-8]. Recently, bioluminescence tomography has become 

possible. It has upgraded the 2-D bioluminescence imaging to 

3-D in vivo detection, providing convenience for researchers in 

more accurate localization of internal bioluminescent sources 

and quantitative analysis of bioluminescent density. 

This newly developed technology has facilitated preclinical 

applications in biomedical in vivo studies, such as tumor 

detection at an early stage, stem cell imaging, and drug efficacy 

evaluation [9-12]. Compared with some other imaging 

modalities, bioluminescence tomography has a higher 

sensitivity capable of reflecting biological changes at the 

cellular level. It costs much less to build a bioluminescence 

tomography system than to set up a PET or MRI system in terms 

of the instrumentation. Besides, the expenditures on 

experimental animals are partly saved because bioluminescence 

tomography enables non-invasive imaging, thus fewer animals 

are needed for one trial. Moreover, bioluminescence 

tomography can realize 3-D visualization in real time, while 

animals are usually required to be sacrificed after the 

experiment for further observation in the conventional way. 

One of the challenging problems in bioluminescence 

tomography is that multiple scattering of photons propagating 

through heterogeneous biological tissues makes it a highly 

ill-posed inverse problem. Besides, the only known information 

available for 3-D reconstruction is the photon distribution on the 

boundary of the target, which leads to a mathematical process of 

solving an underdetermined system of linear equations. Wang et 

al. first theoretically proved that bioluminescent sources can be 

uniquely and accurately recovered by incorporating sufficient a 

priori information to alleviate the ill-posedness [13]. As 

reported in existing literature, multiple types of a priori 

information have been adopted in reconstruction algorithms of 

bioluminescence tomography ranging from the permissible 

source region and spectral information to more involved sparse 

constraint [14-20]. The basic idea is to reduce the number of 

unknown variables or to increase the amount of known 

boundary measurements. 

The other difficulty is that the numerical computation of 

reconstruction could be time-consuming and inefficient due to 
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the large scale of datasets. A variety of reconstruction 

algorithms has been proposed, such as the Guass-Newton 

method, Conjugate Gradient method, Interior-point method, ect. 

[21-24]. Recently, bioluminescent signals were found to have a 

similar property of sparse signals, i.e. there were zeros 

everywhere except on the minimal support of solution space. 

Consequently, the approaches of sparse signal recovery have 

become increasingly popular in bioluminescence tomography, 

surpassing the classical optimization techniques in 

reconstruction efficiency. The essence of sparse signal recovery 

is to utilize limited linear observations via the norm optimal 

strategy. A number of iterative algorithms which have been 

studied to recover sparse signals include the Born iterative 

method, Truncate-Newton, Levenberg-Marquardt approach, etc. 

[25-27]. 

Although there are many challenging problems in 

bioluminescence tomography, consistent efforts are still being 

made to develop more advanced reconstruction methods 

combined with a priori knowledge for more a practical 

application. In this paper, we demonstrate an efficient algorithm 

using iterative reweighted l2 norm optimization while taking 

structural information as priors to localize the bioluminescent 

signals. Furthermore, both numerical simulation studies and in 

vivo mouse studies have been carried out to evaluate the 

feasibility and limitations of the proposed method. Finally, their 

results have been compared with those of the classical 

reconstruction algorithms and the multi-source cases have also 

been designed to test the performance of the proposed method. 

 

II. MATERIALS & METHODS 

There are mainly three steps to implement the proposed 

algorithm using iterative reweighted l2 norm optimization with 

structure priors for bioluminescence tomography. The whole 

process is depicted by Fig. 1. First, the datasets including 

micro-CT volume and bioluminescence images were obtained 

by the experimental system. Then, the structure priors provided 

by micro-CT were employed to generate a heterogeneous mouse 

model by extracting the internal organs and tissues from the 

experimental mouse, which can assist in establishing a more 

accurate photon diffusion model for bioluminescence 

tomography. Third, an optimization function based on this 

forward model was built for subsequent optimization. By 

introducing a weight function into the optimization function, the 

original lp norm problem was converted to a more simple form 

of the l2 norm. Afterwards, an iterative shrinkage operator was 

utilized to avoid the operation of matrix inversion, which can 

reduce the computational complexity. 

A. Experimental System and Data Acquisition 

During imaging, the optical/micro-CT imaging system 

developed by our group [28, 29] was used to acquire the 

experimental datasets, which is an integrative platform that 

combines bioluminescence and fluorescence imaging with 

X-Ray CT scanning. Here, two modalities including 

bioluminescence imaging and X-Ray CT were applied to 

perform the mouse experiment. For micro-CT scanning, the 

cone-beam X-ray generator was operated in a continuous mode 

with the tube voltage being 55 kVp, where 360° projections 

were scanned. For bioluminescence imaging, an ultra-sensitive 

cooled CCD camera with a 13µm×13µm pixel size was 

involved in taking the multi-view optical images. In the in vivo 

experiment, a hairless mouse was injected with Fenestra LC and 

anesthetic. Then, a home-made luminescent bead with a plastic 

wrap was implanted into the mouse liver. 

 

 

Fig. 1. The method overview. 

B. Structure Priors of the Heterogeneous Mouse Model 

As it is known, bioluminescence tomography is a typical 

ill-posed inverse problem with a large number of unknowns and 

a relatively limited number of boundary measurements. It is 

indispensable in incorporating a priori information into the 

inverse problem formulation in order to obtain viable solutions. 

Besides employing the sparse constraint in Section D, we also 

utilized the anatomical structure information acquired by 

micro-CT here. The structure priors can aid in generating a 

heterogeneous mouse model by a hybrid segmentation approach 

briefly illustrated in Fig. 2. 

The heterogeneous model describes the anatomical structure 

of the experimental mouse in three dimensions, containing the 

major organs and tissues, as well as their corresponding optical 

absorption coefficient and optical diffusion coefficient. The 

overall procedure consists of five steps as follows. 

1) For the tissues and organs which show higher contrast on 

CT images, such as the skeleton, stomach, and bladder, 

they were automatically extracted by a thresholding 

method. 
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2) For the parts which have lower contrast on CT but occupy 

a relatively larger area such as the body outline and lungs, 

these were segmented by a region growing method 

combined with thresholding. 

3) Regarding other major organs such as the heart, liver, and 

kidneys, they were extracted by an atlas based approach. It 

firstly built an average-shape atlas, then roughly localized 

the organs, and finally made precise registration.  

4) After obtaining the above separate volumes, we needed to 

integrate them into one volume data, where the priorities 

have been set for different organs and tissues to eliminate 

the inevitable overlaps and holes.  

5) The corresponding optical properties of different parts 

were assigned to depict the interaction of the internal 

bioluminescent signals with different biological tissues. 

The optical properties in this paper were mainly composed 

of the absorption coefficient and the scattering coefficient, 

which were measured by diffusion optical tomography.  

Finally, a heterogeneous anatomical mouse model was 

completed, offering sufficient a priori knowledge to guide the 

following process of building a more accurate photon diffusion 

model for 3-D reconstruction, as well as reflecting a more 

specific position of the reconstruction results inside the mouse. 

 

 

Fig. 2. The procedure of building the heterogeneous mouse model. 

C. Photon Diffusion Model 

To describe how the photons transport through biological 

tissues, the diffusion equation was adopted to model light 

propagation [30], which is defined as 

 

( ) ( )[ ] ( ) ( ) ( ) ,  Ω∈=Φ+Φ∇⋅∇− rrrrrr SD aµ    (1) 

 

where D is the optical diffusion coefficient; r is the position 

vector; Φ  is the photon flux density; aµ  is the absorption 

coefficient; S is the internal source distribution; and Ω  is the 

region of the biological tissues. D is calculated by 
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where 
sµ  is the scattering coefficient; g is the anisotropy 

parameter. The diffusion equation is accompanied by the Robin 

boundary condition, which is given by 
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where κ  is the boundary mismatch factor between the 

biological tissues and air; n  is the refractive index of the 

biological tissues; v  is the unit outward normal on Ω∂ ; and 

Ω∂  is the boundary of the biological tissues. κ  is calculated 

by 
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The theoretical outgoing photon distribution on the boundary 

of the biological tissues is 
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After applying the process of discretization by finite element 

formulation to the photon diffusion model, we established the 

linear relationship between the measured outgoing photon 

distribution on the surface and the unknown internal photon 

distribution via replacing the variables with the matrix-vector 

forms: 

 

,ΓMS =                                      (6) 

 

where M is the system matrix standing for the optical properties 

of the heterogeneous mouse model; Γ  is the surface photon 

distribution acquired by the ultra-sensitive CCD camera of the 

experimental system. Therefore, the ultimate aim of 

bioluminescence tomography is to recover the bioluminescent 

source distribution S in the above linear equation by an effective 

optimization strategy.  

D. Iterative Reweighted l2 Norm Optimization 

The approaches of sparse signal recovery have recently 

become appealing alternatives to reconstruct the internal photon 

distribution because the bioluminescent signals have a similar 

property of sparse signals. Those algorithms basically depend 

on the norm optimal strategy to recover the limited linear 

observations in a computationally effective way, where the 

required number of samples could be less than the quantity 

needed by the Nyquist sampling theorem. For this reason, the 

newly-emerged methods of sparse signal recovery are 

appropriate for solving the underdetermined system of linear 

equations in bioluminescence tomography. 

To find the best basis that stands for the bioluminescent 

signals, one of the effective algorithms will be introduced in this 

section, which is named the iterative reweighted l2 norm 

optimization [31, 32]. This approach is then mathematically 

derived as follows. 

 

1) To begin with the original optimization function: The 

ultimate aim of using iterative reweighted optimization is to 

achieve the unknown internal photon distribution S in Eq. (6), 
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while the classical solution to Eq. (6) can be generally expressed 

in the form below [33]  

,
2

1
minarg

2
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 +− p

p
s

SΓMS λ                     (7) 

 

where λ  is the regularization parameter; 
2

2
  ⋅  represents the l2 

norm; 
p

p
  ⋅  stands for the lp norm; and p is a real number in the 

range from one to two.  

 

2) To simplify the optimization function by introducing a 

weight function: The last term in Eq. (7) involves the lp norm, 

which is usually more complex than the l2 norm during 

computation. To convert the lp norm problem into the l2 norm 

form, the term 
p

p
S  is substituted with (S)SWS

1−Τ . As defined 

in Eq. (8), W(S) is a weight function, which is a diagonal matrix 

with the values |S[k]|
2-p
 in its main diagonal. Here, k is an integer 

greater than or equal to zero, and ][kS  means the kth element in 

S. 
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Then, Eq. (6) can be rewritten in the l2 norm form with the 

weight function as Eq. (9), which has become easier to optimize 

because p does not exist anymore. 
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3) To accelerate the computation by employing an 

iterative shrinkage operator: The computation of the optimal 

values will be slow if we have to calculate the inversion of W(S) 

in Eq. (9), so an iterative shrinkage operator P is employed as 

Eq. (10). It can help to avoid the operation of matrix inversion 

which usually takes up lots of system memory and time. 
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In the above equation, I is a unit matrix; α  represents a 

relaxation constant and it is not less than one; and j is an integer 

greater than or equal to zero.  

 

4) To find the optimal values by using an iterative method: 

With the help of the iterative shrinkage operator P, we can 

finally solve the optimization function by means of iteration. 

The iterative equation is given in Eq. (11), which stands for the 

relationship between Sj+1 and Sj. Here, Sj represents the jth 

estimate of the internal source distribution, and the initial value 

S0=0.001 when j=0. The iterative optimization will stop when 

the ratio R= Sj+1 / Sj ≤ 0.1 is satisfied. 
 

))(
1

( jj
T

1j SMSΓMPS +−=+ α
                 (11) 

 

The procedure of reconstructing the bioluminescent source 

distribution S inside the biological tissues by the proposed 

method can be concisely summarized in Fig. 3. 

 

 

Fig. 3. The procedure of iterative reweighted l2 norm optimization. 

III. RESULTS & DISCUSSION 

In this part, both numerical simulation studies and in vivo 

mouse studies have been designed to analyze the accuracy, 

robustness, and efficiency of the proposed method. All of the 

computational processing was completed on a personal 

computer with 3.20GHz Intel Core i5 CPU and 3GB RAM. 

A. Results of the Heterogeneous Mouse Model 

To generate the heterogeneous mouse model, the original 

dataset acquired by micro-CT was converted into 3-D volume 

data using the classical Feldkamp-Davis-Kress algorithm. Then, 

the volume data was processed by the hybrid segmentation 

method and the major parts of the experimental mouse were 

extracted in sequence. The segmentation results are visualized 

in Fig. 4, where Fig. 4(a) shows the 3-D skeleton, while Fig. 4(b) 

renders the surface of the mouse body. Other organs and tissues 

are visualized in both 2-D and 3-D from Figs. 4(c) to 4(h). Take 

the first row of Figs. 4(c-e) as an example. Fig. 4(c) is one of the 

raw CT slices in 2-D, followed by marking the region of the 
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lungs on the same slice in a darker color which represents the 

current segmentation area shown in Fig. 4(d). After the lungs 

were successfully extracted, they were finally displayed in 3-D 

as depicted in Fig. 4(e). 

Comparing Figs. 4(c, f) and Figs. 4(d, g), we can visually 

assess the segmentation quality. The results suggest that the 

hybrid segmentation method enables extraction of some major 

organs and tissues from the experimental mouse. By integrating 

all of the separate parts, we ultimately obtained the whole-body 

anatomical structure of the mouse as shown in Fig. 5. Therefore, 

a heterogeneous mouse model for reconstruction was 

established, where the corresponding optical properties were 

assigned to different organs and tissues according to Table I. 

Then, the Molecular Optical Simulation Environment (MOSE) 

(http://www.mosetm.net/) was applied to simulate the surface 

photon distribution emitted by bioluminescent signals inside the 

heterogeneous mouse model for numerical simulation studies, 

as depicted in Fig. 5(d). 

 

 

Fig. 4. The segmentation results: (a) skeleton; (b) body outline; (c, f) 2-D slices 

of the X-Ray CT data; (d, g) 2-D slices of the X-Ray CT data with segmentation 

regions marked; (e, h) organs rendered in 3-D. 

 

Fig. 5. The heterogeneous mouse model: (a) front view; (b) side view; (c) rear 

view; (d) with photon distribution of the bioluminescent signals on the surface. 

B. Reconstruction Results: One Source Case 

1) Accuracy: The reconstruction results for the one source 

case in the numerical simulation studies are given in Fig. 6. A 

simulated bioluminescent source was set by MOSE, whose 

center coordinate was (20.00, 12.00, 55.00) and the power 

source was 1.6nW/mm
3
. After reconstruction by the iterative 

reweighted l2 norm optimization, the result based on a 

heterogeneous mouse model in 3-D view is shown in Fig. 6(a) 

when λ =10
-3
. Its cross-sectional view is displayed in Fig. 6(e), 

where the reconstruction center coordinate was (20.63, 12.35, 

55.25), resulting in a reconstruction error of 0.76mm. As 

depicted in Fig. 6(d), the reconstruction error sharply increased 

to 1.84mm when the reconstruction was based on a 

homogeneous mouse model without any anatomical information. 

This is mainly because the heterogeneous model considers the 

specific optical properties of the organs and tissues leading to a 

more accurate description of photon propagation. 

 
TABLE I 

THE OPTICAL PROPERTIES OF MOUSE ORGANS AND TISSUES 

Numerical Simulation Study In vivo Mouse Study 
 

aµ (mm-1) D(mm-1) aµ (mm-1) D(mm-1) 

Lungs 1.4e-3 0.1571 7.1e-3 0.1445 

Heart 5.8e-4 0.3661 2.2e-3 0.2944 

Liver 2.0e-3 0.5112 1.2e-2 0.4318 

Muscle 6.9e-4 0.8756 3.2e-3 0.5619 

Stomach 5.7e-4 0.2414 - - 

Kidneys 8.0e-4 0.1579 - - 

Bone 3.6e-4 0.1424 2.2e-3 0.1137 

 

To compare the reconstruction accuracy, two other classical 

algorithms have been utilized to reconstruct the same datasets 

while maintaining the same termination condition. One was the 

Newton’s method (Newton’s) and the other was the Conjugate 

Gradient method (CG) [34]. The reconstruction results in 

cross-sectional views using Newton’s and CG are given in Figs. 

6(b) and 6(c) respectively. Besides, the corresponding 

numerical results are demonstrated in Figs. 6(f) and 6(g). The 

reconstruction error by Newton’s was 2.52mm, which was three 

times larger than that by the proposed method, while CG 

guaranteed a relatively smaller error of 1.46mm. However, with 

the help of the anatomical structure shown in Fig. 6(c), it can be 

observed that artifacts appeared in the liver region by CG, 

which should not exist in precise reconstruction. 

 

2) Robustness: To further evaluate the reconstruction 

performance, robustness testing was conducted for the proposed 

iterative reweighted l2 norm optimization. Usually, the 

tomographic imaging quality is sensitive to the selection of the 

regularization parameterλ . Hence, λ  with different orders of 

magnitude ranging from 10
-1
 to 10

-20
 were tested. The 

reconstruction results in cross-sectional views are partly 

demonstrated in Figs. 7(a) to 7(h). Although artifacts occurred 

when λ=10
-1
, for most cases, the reconstruction centers were 

still in good agreement with the simulated bioluminescent 

source center.  

Furthermore, the corresponding numerical results are 

displayed in Fig. 7(i). According to the line graph, the 

reconstruction error undesirably reached its highest peak at 

1.53mm when λ=10
-1
, while it fell down to the lowest point 

when λ=10
-3
, followed by a slight change with the variation in 

λ . Particularly, the reconstruction error started to remain steady 
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at 1.32mm since λ=10
-6
. As can be concluded from the above 

results, the reconstruction results were satisfying and hardly 

affected by the different regularization parameters except when 

λ>10
-3
.  

 

 

Fig. 6. The reconstruction results for one source case when λ=10-3: (a) 3-D 

view; (b-e) cross-sectional views, where the circle represents the location of the 

simulated bioluminescent source; (f, g) numerical analysis for the 

reconstruction centers and errors in (b-e). 

 
Fig. 7. The reconstruction results with different regularization parameters λ : 

(a-h) cross-sectional views when λ=10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8 

respectively, where the circle represents the location of the simulated 

bioluminescent source; (g) numerical analysis for the reconstruction errors 

when λ=10-n, where n is an integer raging from 1 to 20. 

3) Efficiency: To examine the computational efficiency, 

Newton’s and CG have been applied once again to reconstruct 

the same datasets in contrast to the proposed method. The 

reconstruction time of the three different methods has been 

compared in Table II, where the computations were based on 

the two 3-D grids respectively. For the grid of 3,397 nodes and 

18,344 tetrahedral elements, Newton’s required more than one 

hour to implement the reconstruction, while CG considerably 

enhanced the efficiency up to 132.43 seconds. Although CG can 

ensure good results within several minutes, it would become 

hardly tolerable to wait as the dataset size increased. 

Consequently, the proposed iterative reweighted optimization 

tended to be helpful and necessary. It took less than 10 seconds 

to complete the reconstruction process.  

Similarly, for another grid of 4,529 nodes and 21,286 

tetrahedral elements listed in Table II, the proposed method was 

still much more efficient than the other two classical algorithms 

despite increasing grid size. The main reason leading to the 

substantial difference among the three methods is that the 

proposed method has employed an iterative shrinkage operator, 

which avoids the time-consuming computation of the matrix 

inversion. Besides, CG is more time-saving than Newton’s on 

account of not having to calculate the Hessian matrix, while 

Newton’s has to calculate the matrix of second-order partial 

derivatives and its inversion. 

 
TABLE II 

THE RECONSTRUCTION TIME OF NEWTON’S, CG, AND THE PROPOSED METHOD 

Grid Size Newton's CG Proposed 

3397×18344 4605.48s 132.43s 9.28s 

4529×21286 6925.12s 297.73s 10.74s 

 

4) Practical Application: To validate the feasibility of the 

proposed approach in a practical application, an in vivo mouse 

experiment has been conducted and its reconstruction results are 

demonstrated in Fig. 8. In this experiment, a hairless mouse with 

a luminescent bead implanted in the liver region was utilized. 

The bead was filled with luminescent liquid which emitted a red 

luminescent light. After imaging, the micro-CT volume and 

bioluminescent images were acquired by the optical/micro-CT 

system. In order to build the heterogeneous mouse model, the 

micro-CT volume was segmented into several parts, which 

consisted of the skeleton, body outline, lungs, heart, liver, and 

stomach as displayed in Fig. 8(a). The corresponding optical 

properties were assigned to different organs and tissues 

according to Table I. Then, the 2-D bioluminescent images were 

mapped onto the 3-D micro-CT volume, so we could obtain the 

photon distribution of the bioluminescent signals on the mouse 

surface, which was indispensable for reconstruction. 

As shown in Figs. 8(b) and 8(e), the location of the internal 

luminescent bead could be determined by the CT scan because 

the bead was wrapped in a plastic material. It examined the 

reconstruction accuracy of the bioluminescence tomography 

results in Figs. 8(c) and 8(d). For reconstruction, the grid 

contained 4,529 nodes and 21,286 tetrahedral elements, while 

the regularization parameter λ  was selected as 10
-3
 due to the 

experience in previous robustness testing. As a result, the 

reconstruction time was 10.74 seconds and the reconstruction 

error was 1.16mm. Although the proposed method for the in 

vivo studies did not perform as well as that for the simulation 
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studies, the reconstruction accuracy and efficiency were still 

acceptable. 

 

 
Fig. 8. The results for in vivo mouse studies: (a) 3-D view of the heterogeneous 

mouse model; (b, e) transverse view and sagittal view of the CT slices, where 

the home-made luminescent bead can be observed approximately in the center; 

(c, d) 2-D views of the reconstruction results, whose slice selections are the 

same as (b) and (e) respectively. 

C. Reconstruction Results: Multi-source Cases 

It has recently caught the attention of researchers to focus on 

multi-source cases due to the actual demands for reconstructing 

more than one region of interest inside an experimental mouse, 

which therefore requires a reconstruction method capable of 

recovering more than one internal bioluminescent source. 

However, the method performs stably in a single source case, 

but it sometimes does not work in multi-source cases because of 

the low optical image resolution as well as the low grid density 

employed to generate the photon diffusion model using finite 

element formulation. In this section, double/triple/quadruple 

source cases were designed to test how the proposed method 

behaved under different circumstances. 

 

 
Fig. 9. The results for the double source case: (a) heterogeneous mouse model 

with photon distribution on the surface, where the distance between two 

internal bioluminescent sources was 10mm; (b) cross-sectional views of the 

reconstruction results when the distance was 10mm; (c) surface photon 

distribution, where the distance between two internal bioluminescent sources 

was 5mm; (d) cross-sectional view of the reconstruction results when the 

distance was 5mm; (e) numerical analysis for the results in (b, d). 

In the double source cases, two experiments were carried out, 

where the distances between the two internal bioluminescent 

sources were 10mm and 5mm respectively. As demonstrated in 

Fig. 9, the reconstruction errors were 1.08mm and 0.65mm 

when the two sources were10mm apart from each other, which 

was slightly better than that of the two being 5mm apart. In the 

triple and quadruple source cases, the shortest distance between 

any two sources was 5mm. As presented in Fig. 10, the 

reconstruction errors did not show a big difference from those of 

the double source cases, but Source D3 and D4 partly 

overlapped as shown in Fig. 10(d). It is necessary to note that: i) 

the regularization parameter λ  was selected as 10
-3
 during 

reconstruction in all of the above cases above; ii) the results 

were no longer satisfactory when the distance between the two 

sources was less than 5mm.  
 

 

Fig. 10. The results for triple and quadruple source cases: (a) surface photon 

distribution for the triple source case, where the shortest distance between two 

internal bioluminescent sources was 5mm; (b) cross-sectional view of the 

reconstruction results for the triple source case; (c) surface photon distribution 

for the quadruple source case, where the shortest distance between the two 

internal bioluminescent sources was 5mm; (d) cross-sectional views of the 

reconstruction results for the quadruple source case; (e) numerical analysis for 

the reconstruction results in (b, d). 

IV. CONCLUSIONS 

In this paper, we proposed an efficient algorithm using 

iterative reweighted l2 norm optimization while taking structural 

information as priors to localize the internal bioluminescent 

signals. The structure priors have been applied to establish a 

heterogeneous mouse model by extracting the major organs and 

tissues of the mouse, thus generating a more precise photon 

diffusion model for the following reconstruction. To analyze the 

performance of the proposed method, both numerical 

simulation studies and in vivo mouse studies have been 

conducted. 

The experimental results indicated that the iterative 

reweighted l2 norm optimization is capable of guaranteeing 

accurate reconstruction for bioluminescence tomography. It 

maintains reliable reconstruction results with the changes in the 

regularization parameter λ , where the results are always 

satisfactory when ≤λ 10
-3
. Regarding the same datasets, the 

proposed iterative reweighted approach computes faster than 

the two classical algorithms especially for the common 
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high-dimensional problems in image processing. Besides, the 

reconstruction results of the in vivo experiment validated its 

feasibility in a practical application. The comparative analyses 

in one of the numerical simulation studies showed that the 

reconstruction based on the heterogeneous mouse model was 

about twice as precise as the one based on the homogeneous 

model. Last but not least, multi-source cases have also been 

considered and the proposed method could provide acceptable 

results when the distance between two sources was not less than 

5mm. 

Future work will concentrate on the study of the proposed 

method for more practical applications, e.g. to conduct in vivo 

experiments based on mice afflicted with tumors to determine if 

it is able to reconstruct the much weaker tumor signal. It is 

believed that bioluminescence tomography will provide more 

potential for earlier detection and characterization of the disease 

and evaluation of the treatment with rapid development of the 

3-D reconstruction algorithms. 
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